NATIONAL UNIVERSITY OF LESOTHO

FACULTY OF HEALTH SCIENCES

BACHELOR OF NURSING SCIENCE - YEAR 2

BNM 2303 - FINANCIAL MANAGEMENT - MAIN EXAMINATION

January 2023 60 marks

Instructions:

- 1. This paper has 4 questions.
- 2. Each question carries 20 marks.
- 3. Question paper is divided into Section A and B.
- 4. Answer question ONE in Section A. Question ONE is compulsory.
- 5. Answer **ONLY TWO** (2) questions in Section B.

SECTION A – ANSWER ALL QUESTIONS IN THIS SECTION

Question one

Discuss the functions of the finance manager and explain how they are related to the objectives of the financial management in an organisation.

[20 Marks]

SECTION B – ANSWER ONLY TWO (2) QUESTIONS IN THIS SECTION

Question two

a) What is Risk? [2 Marks]

b) Describe two types of Risk. [4 Marks]

c) What is return? State the differences between Actual and expected returns. [4 Marks]

d) Dr. Tsoeunyane, a risk-averse surgeon is considering an investment in two mutually exclusive assets: Oncology and X-ray. The two assets have the following discrete probability distribution of projected annual net cash flows:

ONCOLOGY		X-RAY	
Probability	Estimated cash flows	Probability	Estimated cash flow
0.30	M20 000	0.10	M60 000
0.40	M50 000	0.60	M30 000
0.30	M40 000	0.30	M20 000

Required:

Calculate the expected value of the projected annual cash flows of each of the projects. [10 marks]

Question three

Discuss **five** (5) importance of the Cost of Capital in Financial Management. [10 Marks]

The cost of various types of capital of Koena Medicare Ltd is given below along with the target market proportions.

Sources of Capital	Amount	Proportion(W) of total	Cost of Capital (K)
		Capital	
Debts	M240 000	30%	5.68
Preference Share Capital	M 80 000	10%	9.33
Equity Share Capital @ M100	M400 000	50%	13.30
Cost of Retained Earnings	M 80 000	10%	13.00
TOTAL	M800 000	100%	

Required:

Compute the Weighted Average Cost of Capital (WACC) for Koena Medicare LTD. [10 Marks]

Question Four

- a) Suppose you are the finance manager of Khotsong Paediatrics Centre and you have a meeting with the Board of Directors in a month. You need to create a financial analysis of the organisation. You also have been asked to compare Khotsong Paediatrics to other paediatrics healthcare organisations.
 - i). What do you need to complete a financial Analysis?

[2 Marks]

- ii). Mention the classifications of the ratios? And indicate on which financial statement each of the classes of ratios focuses. [9 marks]
- iii). What are the operating indicators used to analyse the financial performance of the organisation? [6 Marks]
- b) From the following information calculate the following ratios:
 - i). Earnings Per Share(EPS)
 - ii). Dividend per share

iii). Dividend Yield [3 Marks]

Net income after tax M550 000
Ordinary Share dividend M230 000
Number of Ordinary shares issued 2 500 000
Market price per share M2.50

APPENDIX A - USEFUL FORMULAS

FINANCIAL RATIO ANALYSIS **A.1**

Current Ratio =	Current Assets
Current Kano –	-Current Lighilities

Debt Ratio =
$$\frac{Total\ Liabilities}{Total\ Assets} \times 100\%$$

$$\frac{\textit{Total Liabilities}}{\textit{Equity(Capital Fund}} \ \textit{x} \ 100\%$$

Gross Profit Margin =
$$\frac{Gross\ Profit}{Sales}$$
 x 100%

Stock Turnover Ratio =
$$\frac{Sales}{Average\ Stock}$$

Fixed Assets Turnover =
$$\frac{Sales}{Fixed Assets}$$

Inventory days =

$$\frac{Average\ Inventory}{Cost\ of\ sales}\ x365\ days$$

Price/Earnings (P/E) ratio = $\frac{Market\ Price\ per\ share}{Earnings\ per\ share}$

$$S = I - E$$

Where:

S,= stands for Surplus;

 I_{\bullet} = for Income; \mathbf{E}_{\bullet} = for Expenditure.

Break-even Quantity

$$Q = \frac{F-D}{p-v}$$

Net Profit Margin =
$$\frac{Net income}{Salas}$$
 x 100%

Return on Equity =
$$\frac{Net\ Income}{Equity}$$
 x 100 %

Net profit as a % of sales=
$$\frac{Net\ Income}{Sales}$$
 x 100

$$\frac{Accounts\ receivable}{Cost\ of\ sales}\ x\ 365\ days$$

$$\frac{Accounts\ payable}{Purchases}\ x\ 365\ days$$

Earnings per Share(EPS) =
$$\frac{Net\ Income}{No.of\ Shares}$$

$$\textbf{Dividend Yield} = \frac{\textit{Dividend per share}}{\textit{Market price per share}}$$

Break-even Relationships (general Model)

$$S = [p - v]Q - F + D$$

S =stands for Surplus.

p -= for price,

 $\mathbf{Q} =$ for quantity (activity level),

 $\mathbf{v} =$ for variable cost per unit,

 $\mathbf{F} =$ for fixed costs, and

 \mathbf{D} = for donations.

Quantity Yielding a Target Surplus

$$Q = \frac{S + F - D}{p - v}$$

Price Yielding a Target Surplus

$$p = \frac{S + F - D}{Q} + v$$

Donation Yielding a Target Surplus

$$D = F + S - [p - v]Q$$

A.3 TIME VALUE OF MONEY Future Values

$$FV = PV (1+r)^n$$

Where:

FV = stands for Future value;

PV = for present value, $\mathbf{r} =$ for interest rates, and $\mathbf{n} =$ for number of periods.

Present Values

$$PV = FV \frac{1}{(1+r)n}$$

Where:

FV = stands for Future value;

PV =for present value,

 \mathbf{r} = for interest rates, and $\mathbf{n} =$ for number of periods.

A 4 COST OF CAPITAL

COST OF DEBT = $K_{dbt} = \frac{l}{n}$

Where,

 \mathbf{K}_{dbt} = Cost of debt before tax

I = Interest

P = Principal Amount

Cost of Preference share capital =

$$K_{pref} = \frac{D+1/n(RV-NP)}{1/2(RV+NP)} x 100$$

Where,

 $\mathbf{K}_{pref} = \text{Cost of preference share capital}$

 \mathbf{D} = Annual dividend \mathbf{RV} = Redemption Value

NP = Net profit/Net Income \mathbf{n} = number of years

Dividend Yield Method = $K_e = \frac{Div}{MP}$

Where,

 $\mathbf{K}_{\mathbf{e}} = \text{Cost of Equity Capital}$

Div = Dividend per Share

MP = Market price per share

Dividend Growth Method = $K_e = \frac{Div1}{NP} + g$

Where,

 $\mathbf{K}_{\mathbf{e}} = \text{Cost of capital}$

 $Div_1 = Dividend of last year$

 $\mathbf{g} = \text{growth in dividend (\%)}$

Cost of Retained Earnings =

$$K_r = K_e(1-t) \times (1-b)$$

Where,

 \mathbf{t} = rate of tax (%)

 \mathbf{b} = brokerage charges

 $\mathbf{g} = \text{growth in dividend (\%)}$

Weighted Average Cost of Capital (WACC) =

$$K_a = W_d K_d + W_p K_p + W_e K_e$$

Where,

 $K_a = WACC$

 $\mathbf{W_d} = \text{Weighted for cost of debt}(\mathbf{K_d})$

 $\mathbf{W}_{\mathbf{P}}$ = Weighted for cost of preference shares($\mathbf{K}_{\mathbf{p}}$) W_e = Weighted for cost of equity capital (K_e)

A. 5 RISK AND RETURN

Expected Return =
$$\mathbf{R} = \mathbf{E}(\mathbf{R}) = \frac{1}{n} \sum \mathbf{R}_1 \mathbf{x} \mathbf{Pr}(\mathbf{R}_1)$$
 Variance = $\sigma_R^2 = \sqrt{\sum (\mathbf{R}_i - (\mathbf{E}(\mathbf{R}))^2 \mathbf{x} \mathbf{Pr}(\mathbf{R})_i)}$

Variance =
$$\sigma_R^2 = \sqrt{\sum (R_i - (E(R))^2 \times Pr(R)_i)^2}$$

Where,

 $\label{eq:R1,R2.....Rn} R_1, R_2R_n = \text{the return associated} \quad \text{with} \\ n \text{ different outcomes;}$

n= number of possible outcomes

Where,

Var(R) = the variance of returns

 \mathbf{O}' = the standard deviation of returns

 $\mathbf{E}(\mathbf{R})$ = the expected return or mean value of Returns

 $\mathbf{R_i}$ = the return for the *ith* outcome

 $\begin{aligned} Pr(R_i) &= \text{the probability of occurrence on the } \textit{ith} \\ &\text{Outcome} \end{aligned}$

n = the number of outcome considered.