NATIONAL UNIVERSITY OF LESOTHO

FACULTY OF HEALTH SCIENCES

BSc Nutrition

SUPPLEMENTARY EXAMINATIONS

NUT 3315- FOOD CHEMISTRY AND ANALYSIS II

DATE: AUGUST 2023 TOTAL MARKS: (100) TIME: 3 HOURS

INSTRUCTIONS: ANSWER ALL QUESTIONS IN THIS QUESTION PAPER.

THE MARKS FOR EACH QUESTION ARE SHOWN IN THE BRACKETS.

Questions One

- 1. Describe the sample preparation in IR spectrophotometry. [8]
- 2. State four spectrophotometric errors and their corrections. [8]
- 3. The IR spectrophotometry spectrum below is for the unknown molecule with molecular formula $C_5H_{10}O$ in the analysis of food additives.

a. - [4]

Which of these molecules best corresponds to the IR spectrum below?

In the analysis of iron from the wheat flour using UV-VIS spectrophotometry, the complex $FeSCN^{2+}$ had the wavelength of its maximum absorption at 580 nm with a molar absorptivity of 7.00×10^3 Lcm⁻¹mol⁻¹. Calculate

Questions Two

a. The absorbance of a 3.75×10^{-5} M solution of the complex at 580 nm in a 1.00-cm cell. [8]

b. The absorbance of a solution in which the concentration of the complex is twice that in (a). [6]

Questions Three

Give the numbers for a - I complete the following table.

Wavelength	Frequency	Wavenumber	Energy	
(m)	(s^{-1})	(cm ⁻¹)	(J/molecule)	
4.50×10^{-9}	(a):	(b):	(c):	
(d):	1.33×10^{15}	(e):	(f):	
(g):	(h):	3215	(i):	
(j):	(k):	(1):	7.20×10^{-19}	

Total [36]

Questions Four

Match the following;

[8]

Analytical Techniques		Definition		
1.	IR	A. U	. Used for quantitative analysis of metals	
		i	in the sample.	
2.	UV-VIS	B. I	Involves interaction between stationary	
		ŗ	phase and mobile phase to identify and	
		Ç	quantify chemical components.	
3.	AAS	C. r	measurement of coloured reaction	
		ŗ	products	
4.	GC	D. (Can be used to identify the functional	
		٤	groups of organic compounds.	

Questions Five

The absorbance, A_0 , of the fruit solution being tested for potassium is measured three times, giving replicate values, $A_0 = 0.763$, 0.741, 0.749.

The calibration values of absorbances, A, of the six standard concentrations, C, are given in the table below:

C (mg L ⁻¹)	0	20	40	60	80	100	120
Α	0	0.267	0.583	0.824	1.120	1.313	1.499

Molar mass of potassium permanganate, KMnO4, Mm = 158 g mol-1.

- a) Calculate a 'best-estimate' for the **molar absorptivity**, ε , of potassium permanganate at this wavelength, assuming that the path length of the cell used to hold the solution is 10 mm. [10]
- b) Use the experimental data to calculate a 'best-estimate' for the concentration, C_0 , of the test solution. [10]

(You will need to consider the applicability of Beer's law for this particular set of experimental data.)

...End...