C
NATIONAL UNIVERSITY OF LESOTHO

BSC ENVIRONMENTAL HEALTH \&
 BSC NUTRITION
 SUPPLEMENTARY I EXAMINATIONS

NUT4306/EHS407: PROJECT MANAGEMENT AND ENTREPRENEURSHIP

TIME: 3 HOURS

TOTAL MARKS: 100

INSTRUCTIONS

- Read instructions before attempting any question in this paper
- Attempt every question in this paper
- This paper consists of two sections, section A and section B
- Section A consists of questions deduced from project management part while section B is made up of questions from the entrepreneurship part
- You may need your calculator to attempt some of the questions
- For entrepreneurship questions use compound interest NOT simple interest for your calculations
- The discrete cash flow interest factors are shown at the back of the page

SECTION A: PROJECT MANAGEMENT [62 MARKS]

1. State four phases of a project [4 marks]
2. Define what a project life-cycle mean. [2]
3. Compare and contrast between the two types of project selection models [6 marks]
4. Following countless complaints from relevant stakeholders regarding insufficient lecture theatres, National University of Lesotho decided to upgrade its lecture theatres and a professional project manager was engaged to manage construction of Moshoeshoe building and activities for this project are summarized in table 1 below.

Activity	Predecessor	Duration (days)
A	-	4
B	A	6
C	A	3
D	B	6
E	C	5
F	C	4
G	D, E	2
H	F, G	6

i. Construct a network diagram for this project [5 marks]
ii. Calculate the early start and early finish for every activity listed in table 1 above [6 marks]
iii. Define what is a critical path and calculate the critical path for this project [4 marks]
iv. Calculate the late start and late finish for this project [5 marks]
v. Define a slack or float in project management [2 marks]
vi. Calculate FLOAT/SLACK in this project [2 marks]
vii. Can activities in the critical path be SLACKED? Justify your answer above [2 marks]
5. Explain why a project would/can be terminated? [2 marks]
6. Outline the 4 types of project termination [4 marks]
7. Differentiate between Expression Of Interest (IOE) and Request For Proposal (RFP) [2 marks]
8. Why is important to draft a RFP in project management and what does it entail [6 marks]
9. Briefly describe how a tendering process is conducted from RFP to contract appointment [10 marks]

SECTION B: ENTREPRENUERSHIP [38 MARKS]

1. You have just been appointed as a Marketing specialist for XXX company that manufactures still water and you are given a responsibility to come up with the best marketing principles and strategies;
a) What will be your proposed marketing strategies? [3 marks]
b) What resources will you need? [2 marks]
c) What will be your product competitive advantages and disadvantages in terms of marketing principles and branding? [5 marks]
d) Illustrate crossing the chasm and the position of your product by showing a chasm chart [4 marks]
e) How you will approach the decision makers in the buyers' organizations for them to switch to your product [3 marks]
2. The department of Traffic Security of a city is considering the purchase of new drone for aerial surveillance of traffic on its most congested streets. A similar purchase 4 years ago cost LSL 1200 000.00. At an interest rate of 7% per year, what is the equivalent value today of the previous LSL 1200000.00 expenditure? [3 marks]
3. In order to make CDs to look more attractive as an investment than they really are, some banks advertise that their rates are higher than the competitor's rates, however the fine print says the rate is based on simple interest. If you were to deposit LSL10 000.00 at 10% per year simple interest in a CD, what compound interest rate would yield the same amount of money in 3 years? [3 marks]
4. A contractor purchased equipment for LSL 500000 that provided income of LSL 60 000.00 per year. At an interest rate of 9% per year, calculate the length of time (in years) required to recover the investment [3 marks]
5. Mr Lillo has initially bought a car at LSL500 000.00, its annual maintenance and operating costs are LSL 5000.00 and LSL 15000.00 respectively and if he decides to sell this car after 5 it is going to give him LSL 100000.00 . Alternatively, there is a new bakkie in the market that costs LSL 700000.00 and it predetermined annual operating costs will be LSL 6000.00 and if he decides to sell it after 5 years it is about to give him LSL350 000.00, on the basis of annual worth analysis, should he keep the old car or replace it, consider annual interest rate of 11% [6 marks]
6. One of the two methods must be used to produce expansion anchors. Method A costs LSL 80000.00 initially and will have a LSL 15000.00 salvage value after 3 years. The operating cost with this method will be LSL 30000 per year. Method B will have a first cost of LSL 120 000.00, an operating cost of LSL 8000.00 per year, and a LSL 40 000.00 salvage value after 3 years. At an interest rate of 12% per year, which method should be used on the basis of a present worth analysis? Justify your answer [6 marks]

'END"

7\%		TABLE 1	Discrete Cash Flow: Compound Interest Factors					7\%
	Single Payments		Uniform Series Payments				Arithmetic Gradients	
n	Compound Amount F / P	Present Worth P/F	Sinking Fund A/F	Compound Amount F/A	Capital Recovery A / P	Present Worth P/A	Gradient Present Worth P/G	Gradient Uniform Series A/G
1	1.0700	0.9346	1.00000	1.0000	1.07000	0.9346		
2	1.1449	0.8734	0.48309	2.0700	0.55309	1.8080	0.8734	0.4831
3	1.2250	0.8163	0.31105	3.2149	0.38105	2.6243	2.5060	0.9549
4	1.3108	0.7629	0.22523	4.4399	0.29523	3.3872	4.7947	1.4155
5	1.4026	0.7130	0.17389	5.7507	0.24389	4.1002	7.6467	1.8650
6	1.5007	0.6663	0.13980	7.1533	0.20980	4.7665	10.9784	2.3032
7	1.6058	0.6227	0.11555	8.6540	0.18555	5.3893	14.7149	2.7304
8	1.7182	0.5820	0.09747	10.2598	0.16747	5.9713	18.7889	3.1465
9	1.8385	0.5439	0.08349	11.9780	0.15349	6.5152	23.1404	3.5517
10	1.9672	0.5083	0.07238	13.8164	0.14238	7.0236	27.7156	3.9461
11	2.1049	0.4751	0.06336	15.7836	0.13336	7.4987	32.4665	4.3296
12	2.2522	0.4440	0.05590	17.8885	0.12590	7.9427	37.3506	4.7025
13	2.4098	0.4150	0.04965	20.1406	0.11965	8.3577	42.3302	5.0648
14	2.5785	0.3878	0.04434	22.5505	0.11434	8.7455	47.3718	5.4167
15	2.7590	0.3624	0.03979	25.1290	0.10979	9.1079	52.4461	5.7583
16	2.9522	0.3387	0.03586	27.8881	0.10586	9.4466	57.5271	6.0897
17	3.1588	0.3166	0.03243	30.8402	0.10243	9.7632	62.5923	6.4110
18	3.3799	0.2959	0.02941	33.9990	0.09941	10.0591	67.6219	6.7225
19	3.6165	0.2765	0.02675	37.3790	0.09675	10.3356	72.5991	7.0242
20	3.8697	0.2584	0.02439	40.9955	0.09439	10.5940	77.5091	7.3163
21	4.1406	0.2415	0.02229	44.8652	0.09229	10.8355	82.3393	7.5990
22	4.4304	0.2257	0.02041	49.0057	0.09041	11.0612	87.0793	7.8725
23	4.7405	0.2109	0.01871	53.4361	0.08871	11.2722	91.7201	8.1369
24	5.0724	0.1971	0.01719	58.1767	0.08719	11.4693	96.2545	8.3923
25	5.4274	0.1842	0.01581	63.2490	0.08581	11.6536	100.6765	8.6391
26	5.8074	0.1722	0.01456	68.6765	0.08456	11.8258	104.9814	8.8773
27	6.2139	0.1609	0.01343	74.4838	0.08343	11.9867	109.1656	9.1072
28	6.6488	0.1504	0.01239	80.6977	0.08239	12.1371	113.2264	9.3289
29	7.1143	0.1406	0.01145	87.3465	0.08145	12.2777	117.1622	9.5427
30	7.6123	0.1314	0.01059	94.4608	0.08059	12.4090	120.9718	9.7487
31	8.1451	0.1228	0.00980	102.0730	0.07980	12.5318	124.6550	9.9471
32	8.7153	0.1147	0.00907	110.2182	0.07907	12.6466	128.2120	10.1381
33	9.3253	0.1072	0.00841	118.9334	0.07841	12.7538	131.6435	10.3219
34	9.9781	0.1002	0.00780	128.2588	0.07780	12.8540	134.9507	10.4987
35	10.6766	0.0937	0.00723	138.2369	0.07723	12.9477	138.1353	10.6687
40	14.9745	0.0668	0.00501	199.6351	0.07501	13.3317	152.2928	11.4233
45	21.0025	0.0476	0.00350	285.7493	0.07350	13.6055	163.7559	12.0360
50	29.4570	0.0339	0.00246	406.5289	0.07246	13.8007	172.9051	12.5287
55	41.3150	0.0242	0.00174	575.9286	0.07174	13.9399	180.1243	12.9215
60	57.9464	0.0173	0.00123	813.5204	0.07123	14.0392	185.7677	13.2321
65	81.2729	0.0123	0.00087	1146.76	0.07087	14.1099	190.1452	13.4760
70	113.9894	0.0088	0.00062	1614.13	0.07062	14.1604	193.5185	13.6662
75	159.8760	0.0063	0.00044	2269.66	0.07044	14.1964	196.1035	13.8136
80	224.2344	0.0045	0.00031	3189.06	0.07031	14.2220	198.0748	13.9273
85	314.5003	0.0032	0.00022	4478.58	0.07022	14.2403	199.5717	14.0146
90	441.1030	0.0023	0.00016	6287.19	0.07016	14.2533	200.7042	14.0812
95	618.6697	0.0016	0.00011	8823.85	0.07011	14.2626	201.5581	14.1319
96	661.9766	0.0015	0.00011	9442.52	0.07011	14.2641	201.7016	14.1405
98	757.8970	0.0013	0.00009	10813	0.07009	14.2669	201.9651	14.1562
100	867.7163	0.0012	0.00008	12382	0.07008	14.2693	202.2001	14.1703

9\%		TABLE 1	Discrete Cash Flow: Compound Interest Factors					9\%
	Single Payments		Uniform Series Payments				Arithmetic Gradients	
n	Compound Amount F/P	Present Worth P/F	Sinking Fund A/F	Compound Amount F/A	Capital Recovery A / P	Present Worth P/A	Gradient Present Worth P/G	Gradient Uniform Series A/G
1	1.0900	0.9174	1.00000	1.0000	1.09000	0.9174		
2	1.1881	0.8417	0.47847	2.0900	0.56847	1.7591	0.8417	0.4785
3	1.2950	0.7722	0.30505	3.2781	0.39505	2.5313	2.3860	0.9426
4	1.4116	0.7084	0.21867	4.5731	0.30867	3.2397	4.5113	1.3925
5	1.5386	0.6499	0.16709	5.9847	0.25709	3.8897	7.1110	1.8282
6	1.6771	0.5963	0.13292	7.5233	0.22292	4.4859	10.0924	2.2498
7	1.8280	0.5470	0.10869	9.2004	0.19869	5.0330	13.3746	2.6574
8	1.9926	0.5019	0.09067	11.0285	0.18067	5.5348	16.8877	3.0512
9	2.1719	0.4604	0.07680	13.0210	0.16680	5.9952	20.5711	3.4312
10	2.3674	0.4224	0.06582	15.1929	0.15582	6.4177	24.3728	3.7978
11	2.5804	0.3875	0.05695	17.5603	0.14695	6.8052	28.2481	4.1510
12	2.8127	0.3555	0.04965	20.1407	0.13965	7.1607	32.1590	4.4910
13	3.0658	0.3262	0.04357	22.9534	0.13357	7.4869	36.0731	4.8182
14	3.3417	0.2992	0.03843	26.0192	0.12843	7.7862	39.9633	5.1326
15	3.6425	0.2745	0.03406	29.3609	0.12406	8.0607	43.8069	5.4346
16	3.9703	0.2519	0.03030	33.0034	0.12030	8.3126	47.5849	5.7245
17	4.3276	0.2311	0.02705	36.9737	0.11705	8.5436	51.2821	6.0024
18	4.7171	0.2120	0.02421	41.3013	0.11421	8.7556	54.8860	6.2687
19	5.1417	0.1945	0.02173	46.0185	0.11173	8.9501	58.3868	6.5236
20	5.6044	0.1784	0.01955	51.1601	0.10955	9.1285	61.7770	6.7674
21	6.1088	0.1637	0.01762	56.7645	0.10762	9.2922	65.0509	7.0006
22	6.6586	0.1502	0.01590	62.8733	0.10590	9.4424	68.2048	7.2232
23	7.2579	0.1378	0.01438	69.5319	0.10438	9.5802	71.2359	7.4357
24	7.9111	0.1264	0.01302	76.7898	0.10302	9.7066	74.1433	7.6384
25	8.6231	0.1160	0.01181	84.7009	0.10181	9.8226	76.9265	7.8316
26	9.3992	0.1064	0.01072	93.3240	0.10072	9.9290	79.5863	8.0156
27	10.2451	0.0976	0.00973	102.7231	0.09973	10.0266	82.1241	8.1906
28	11.1671	0.0895	0.00885	112.9682	0.09885	10.1161	84.5419	8.3571
29	12.1722	0.0822	0.00806	124.1354	0.09806	10.1983	86.8422	8.5154
30	13.2677	0.0754	0.00734	136.3075	0.09734	10.2737	89.0280	8.6657
31	14.4618	0.0691	0.00669	149.5752	0.09669	10.3428	91.1024	8.8083
32	15.7633	0.0634	0.00610	164.0370	0.09610	10.4062	93.0690	8.9436
33	17.1820	0.0582	0.00556	179.8003	0.09556	10.4644	94.9314	9.0718
34	18.7284	0.0534	0.00508	196.9823	0.09508	10.5178	96.6935	9.1933
35	20.4140	0.0490	0.00464	215.7108	0.09464	10.5668	98.3590	9.3083
40	31.4094	0.0318	0.00296	337.8824	0.09296	10.7574	105.3762	9.7957
45	48.3273	0.0207	0.00190	525.8587	0.09190	10.8812	110.5561	10.1603
50	74.3575	0.0134	0.00123	815.0836	0.09123	10.9617	114.3251	10.4295
55	114.4083	0.0087	0.00079	1260.09	0.09079	11.0140	117.0362	10.6261
60	176.0313	0.0057	0.00051	1944.79	0.09051	11.0480	118.9683	10.7683
65	270.8460	0.0037	0.00033	2998.29	0.09033	11.0701	120.3344	10.8702
70	416.7301	0.0024	0.00022	4619.22	0.09022	11.0844	121.2942	10.9427
75	641.1909	0.0016	0.00014	7113.23	0.09014	11.0938	121.9646	10.9940
80	986.5517	0.0010	0.00009	10951	0.09009	11.0998	122.4306	11.0299
85	1517.93	0.0007	0.00006	16855	0.09006	11.1038	122.7533	11.0551
90	2335.53	0.0004	0.00004	25939	0.09004	11.1064	122.9758	11.0726
95	3593.50	0.0003	0.00003	39917	0.09003	11.1080	123.1287	11.0847
96	3916.91	0.0003	0.00002	43510	0.09002	11.1083	123.1529	11.0866
98	4653.68	0.0002	0.00002	51696	0.09002	11.1087	123.1963	11.0900
100	5529.04	0.0002	0.00002	61423	0.09002	11.1091	123.2335	11.0930

10\%		TABLE 15	Discrete Cash Flow: Compound Interest Factors					10\%
	Single Payments		Uniform Series Payments				Arithmetic Gradients	
n	Compound Amount F / P	Present Worth P/F	Sinking Fund A/F	Compound Amount F/A	Capital Recovery A/P	Present Worth P/A	Gradient Present Worth P/G	Gradient Uniform Series A/G
1	1.1000	0.9091	1.00000	1.0000	1.10000	0.9091		
2	1.2100	0.8264	0.47619	2.1000	0.57619	1.7355	0.8264	0.4762
3	1.3310	0.7513	0.30211	3.3100	0.40211	2.4869	2.3291	0.9366
4	1.4641	0.6830	0.21547	4.6410	0.31547	3.1699	4.3781	1.3812
5	1.6105	0.6209	0.16380	6.1051	0.26380	3.7908	6.8618	1.8101
6	1.7716	0.5645	0.12961	7.7156	0.22961	4.3553	9.6842	2.2236
7	1.9487	0.5132	0.10541	9.4872	0.20541	4.8684	12.7631	2.6216
8	2.1436	0.4665	0.08744	11.4359	0.18744	5.3349	16.0287	3.0045
9	2.3579	0.4241	0.07364	13.5795	0.17364	5.7590	19.4215	3.3724
10	2.5937	0.3855	0.06275	15.9374	0.16275	6.1446	22.8913	3.7255
11	2.8531	0.3505	0.05396	18.5312	0.15396	6.4951	26.3963	4.0641
12	3.1384	0.3186	0.04676	21.3843	0.14676	6.8137	29.9012	4.3884
13	3.4523	0.2897	0.04078	24.5227	0.14078	7.1034	33.3772	4.6988
14	3.7975	0.2633	0.03575	27.9750	0.13575	7.3667	36.8005	4.9955
15	4.1772	0.2394	0.03147	31.7725	0.13147	7.6061	40.1520	5.2789
16	4.5950	0.2176	0.02782	35.9497	0.12782	7.8237	43.4164	5.5493
17	5.0545	0.1978	0.02466	40.5447	0.12466	8.0216	46.5819	5.8071
18	5.5599	0.1799	0.02193	45.5992	0.12193	8.2014	49.6395	6.0526
19	6.1159	0.1635	0.01955	51.1591	0.11955	8.3649	52.5827	6.2861
20	6.7275	0.1486	0.01746	57.2750	0.11746	8.5136	55.4069	6.5081
21	7.4002	0.1351	0.01562	64.0025	0.11562	8.6487	58.1095	6.7189
22	8.1403	0.1228	0.01401	71.4027	0.11401	8.7715	60.6893	6.9189
23	8.9543	0.1117	0.01257	79.5430	0.11257	8.8832	63.1462	7.1085
24	9.8497	0.1015	0.01130	88.4973	0.11130	8.9847	65.4813	7.2881
25	10.8347	0.0923	0.01017	98.3471	0.11017	9.0770	67.6964	7.4580
26	11.9182	0.0839	0.00916	109.1818	0.10916	9.1609	69.7940	7.6186
27	13.1100	0.0763	0.00826	121.0999	0.10826	9.2372	71.7773	7.7704
28	14.4210	0.0693	0.00745	134.2099	0.10745	9.3066	73.6495	7.9137
29	15.8631	0.0630	0.00673	148.6309	0.10673	9.3696	75.4146	8.0489
30	17.4494	0.0573	0.00608	164.4940	0.10608	9.4269	77.0766	8.1762
31	19.1943	0.0521	0.00550	181.9434	0.10550	9.4790	78.6395	8.2962
32	21.1138	0.0474	0.00497	201.1378	0.10497	9.5264	80.1078	8.4091
33	23.2252	0.0431	0.00450	222.2515	0.10450	9.5694	81.4856	8.5152
34	25.5477	0.0391	0.00407	245.4767	0.10407	9.6086	82.7773	8.6149
35	28.1024	0.0356	0.00369	271.0244	0.10369	9.6442	83.9872	8.7086
40	45.2593	0.0221	0.00226	442.5926	0.10226	9.7791	88.9525	9.0962
45	72.8905	0.0137	0.00139	718.9048	0.10139	9.8628	92.4544	9.3740
50	117.3909	0.0085	0.00086	1163.91	0.10086	9.9148	94.8889	9.5704
55	189.0591	0.0053	0.00053	1880.59	0.10053	9.9471	96.5619	9.7075
60	304.4816	0.0033	0.00033	3034.82	0.10033	9.9672	97.7010	9.8023
65	490.3707	0.0020	0.00020	4893.71	0.10020	9.9796	98.4705	9.8672
70	789.7470	0.0013	0.00013	7887.47	0.10013	9.9873	98.9870	9.9113
75	1271.90	0.0008	0.00008	12709	0.10008	9.9921	99.3317	9.9410
80	2048.40	0.0005	0.00005	20474	0.10005	9.9951	99.5606	9.9609
85	3298.97	0.0003	0.00003	32980	0.10003	9.9970	99.7120	9.9742
90	5313.02	0.0002	0.00002	53120	0.10002	9.9981	99.8118	9.9831
95	8556.68	0.0001	0.00001	85557	0.10001	9.9988	99.8773	9.9889
96	9412.34	0.0001	0.00001	94113	0.10001	9.9989	99.8874	9.9898
98	11389	0.0001	0.00001		0.10001	9.9991	99.9052	9.9914
100	13781	0.0001	0.00001		0.10001	9.9993	99.9202	9.9927

