# NATIONAL UNIVERSITY OF LESOTHO <br> B.Eng/B.Sc SUPPLEMENTARY EXAMINATIONS <br> EE4401 - Digital Circuit Design 

AUGUST 2023
TIME: 3 HOURS

INSTRUCTIONS: Answer any 4 questions
: Begin answering each question on a new sheet
: Under each question answer the sub questions in the chronological order

TOTAL MARKS: 100

IMPORTANT FORMULAE:
Average Power: $\mathrm{P}_{\mathrm{D}(\text { avg })}=\mathrm{I}_{\mathrm{CC}(\text { avg })} \mathrm{V}_{\mathrm{CC}}$
Average Current: $\mathrm{I}_{\mathrm{CC}(\text { avg })}=0.5\left(\mathrm{I}_{\mathrm{CCL}}+\mathrm{I}_{\mathrm{CCH}}\right)$

## Question 1

a) If $\mathrm{A}=1101_{2}$ and $\mathrm{B}=0101_{2}$ and they are to be added with carry look ahead adder, show how $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, and $\mathrm{C}_{4}$ will be produced using the generate and the propagate functions and calculate their values.
b) Implement the following functions using NOR logic
$\mathrm{F}=\mathrm{XY}+\mathrm{XZ}+\bar{X} \mathrm{YZ}$
[3 Marks]
$\mathrm{G}=\overline{X+Y}$
[1 Mark]
c) The $\mathrm{R}-2 \mathrm{R}$ ladder DAC is connected to a 12 V supply where $\mathrm{R}=6 \mathrm{k} \Omega$; and $\mathrm{R}_{\mathrm{F}}=18 \mathrm{k} \Omega$. Predict the analogue signal value if the input digital word is 0011100100.
d) Generally, what elements make up a configurable logic block (CLB) in an FPGA? What elements make up a logic module?
[4 Marks]
e) Determine the output the Some OF Products (SOP) expression of the LUT for the internal conditions shown in the figure below


Figure 1

## Question 2

a) A remote digital receiver module designed for receiving BDC code information must have an error detection circuit. The error detection circuit's output Z must be high whenever an invalid BCD code $\left[\mathrm{C}_{3}-\mathrm{C}_{0}\right]$ is received (i.e. $\left[\mathrm{C}_{3}-\mathrm{C}_{0}\right]>1001$ ).
i) Design a minimal combinational error detection circuit for the receiver.
ii) Implement the error detection circuit using NAND gates only.
iii) Implement the error checking circuit using only one 8-to1 line multiplexor. N.B don't draw the multiplexor at the gate level, use only a block diagram that represents that multiplexor.
b) What is the difference between PAL, CPLD and FPGA?
[6 Marks]

$$
\text { [Total = } 25 \text { Marks] }
$$

## Question 3

a) Implement Synchronous 3-bit counter using D flip-flops
b) Indicate how you will use the JK Flip-Flop to act as D flip-flop.
c) Consider a presentable clock divider shown in the figure below. If the clock divider's input is 2 kHz , its output should vary depending on the input $\mathrm{D}[1: 0]$ as shown in the table below.

| D1 | D0 | Output Frequency [Z] |
| :--- | :--- | :--- |
| 0 | 0 | 1 kHz |
| 0 | 1 | 500 Hz |
| 1 | 0 | 250 Hz |
| 1 | 1 | 125 Hz |



Figure 2
Use 2-bit counters and 2-to-1 line multiplexors only, to design a presentable counter. [8 Marks]
d) Draw a 4 bit serial-in serial-out shift register using JK flip-flops

## Question 4

a) A flash-ADC shown in Figure 3 is to be used in a data -acquisition industrial application. The analogue voltage output of the sensor $\mathrm{V}_{\mathrm{A}}$ is proportional to the pressure being monitored.


Figure 3
(i) Complete the design of a flash-ADC in Figure 3 by designing an encoder that will provide a resolution of 1 volt. That is, when $V_{A}$ is within $[0,1)$ volts then the $\left[D_{1} D_{0}\right]=00$, when $V_{A}$ is in the interval $[1,2)$ volts then $\left[\mathrm{D}_{1} \mathrm{D}_{0}\right]=01$ etc.
[10 Marks]
(ii) Assume that the propagation delay of analogue voltage comparators is negligible and the existence of 2-input NOR-gates with a maximum propagation delay of 10 ns . Implement the encoder design of (i) above using NOR-gates only and estimate conversion-time of the flashADC.
[7 Marks]
b) A vehicle uses a speed sensor and a 10-bit SAR-ADC for its digital speed indication. The transducer sensitivity is $90 \mathrm{mV} / \mathrm{kph}$ and the ADC clock frequency is 89 kHz . Assuming that V ref $=12 \mathrm{~V}$ (full-scale deflection) and the vehicle speed is 80 kph (kilometre per hour) find the converter binary output.
[8 Marks]

## Question 5

a) Two different logic circuits have the characteristics shown in the figure below.
i) Which circuit has the best LOW-state dc noise immunity? Which circuit has the best HIGHstate dc noise immunity?
ii) Which circuit can operate at higher frequencies?
iii) Which circuit draws the most supply current?

|  | Circuit $A$ | Circuit $B$ |
| :--- | :---: | :---: |
| $V_{\text {supply }}(\mathrm{V})$ | 6 | 5 |
| $V_{\mathrm{IH}}(\min )(\mathrm{V})$ | 1.6 | 1.8 |
| $V_{\mathrm{IL}}(\mathrm{max})(\mathrm{V})$ | 0.9 | 0.7 |
| $V_{\mathrm{OH}}(\mathrm{min})(\mathrm{V})$ | 2.2 | 2.5 |
| $V_{\mathrm{OL}}(\mathrm{max})(\mathrm{V})$ | 0.4 | 0.3 |
| $t_{\mathrm{PLH}}(\mathrm{ns})$ | 10 | 18 |
| $t_{\mathrm{PHL}}(\mathrm{ns})$ | 8 | 14 |
| $P_{\mathrm{D}}(\mathrm{mW})$ | 16 | 10 |

Figure 4
b) A certain logic family has the following voltage parameters

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{IH}}(\min )=3.5 \mathrm{~V} & \mathrm{~V}_{\mathrm{IL}}(\max )=1.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{OH}}(\min )=4.9 \mathrm{~V} & \mathrm{~V}_{\mathrm{OL}}(\max )=0.1 \mathrm{~V}
\end{array}
$$

i) What is the largest positive-going noise spike that can be tolerated?
ii) What is the largest negative-going noise spike that can be tolerated?
c) Draw a diagram of a TTL NOR gate
d) Determine the output of the array in the figure below


Figure 5
[Total = 25 Marks]

