NATIONAL UNIVERSITY OF LESOTHO

B.A. SUPPLEMENTARY EXAMINATION

EC3303: PRINCIPLES OF MATHEMATICAL ECONOMICS

August 2023100 MarksTime: 3 hours

INSTRUCTION: Answer any FOUR questions

Question 1

- a) Suppose your exogenous income is R200, the price of shirts is R10 and the price of pants is R20. Suppose further that, you held a coupon that gives you 50% off the first 6 pair of pants (when the regular price of pants is R20.) What will be your choice set?
- b) Sometimes, money that can be devoted to consumption is not *exogenous*, but arises *endogenously* from the decisions a consumer makes and the price vector she faces in the market. If a consumer returned to the shop with 10 shirts and 5 pants to get a store credit at the current price, his income can be expressed as $I = 5p_1 + 10p_2$. What will be his choice set? (2)
- c) The quantity of a commodity supplied to the market when the selling price is *P* takes the form of:

$$Q = a + bP + cP^2$$
, for some constants a, b and c.

It is known that when P = 2, the quantity supplied is Q = 7; when P = 3, the quantity supplied is Q = 16 and when P = 4, the quantity supplied is Q = 29.

- i) Formulate a system of three linear equations in the unknowns of a, b and c. (3)
- ii) Express the system of linear equations in matrix form and solve it. (13)
- iii) What would be the quantity supplied if the price was P=1? (3)

Question 2

- a) Find the eigenvalues and their corresponding eigenvectors of matrix $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$ (6)
- **b**) Find the rank of the matrix $B = \begin{bmatrix} 0 & -11 & -4 \\ 2 & 6 & 2 \\ 4 & 1 & 0 \end{bmatrix}$ (4)

c) Determine the sign definiteness of the function $5x_1^2 + 8x_1x_2 + 5x_2^2$. (5)

- **d**) Diagonalize matrix $C = \begin{bmatrix} -3 & -4 \\ 5 & 6 \end{bmatrix}$ (5)
- e) The Utility function of a hypothetical household consuming commodity x is given by

$$U(x) = \frac{x^2}{(x-4)}$$
, locate the position and the nature of any turning points on this function. (5)

Question 3

 a) In each of the following cases, determine whether the function is homogeneous or not. If it is so, find the degree of homogeneity?

i)
$$x^2y + 6x^3 + 7$$
 (2)

ii)
$$g(x, y, z) = \frac{\sqrt{3x^2 + 5y^2 + z^2}}{4x + 7y}$$
 (3)

- **b**) Verify Euler's Theorem for the function $u = \frac{1}{\sqrt{x^2 + y^2}}$ (4)
- c) Show that the Cobb-Douglas production function is homogeneous and it satisfies the Euler's theorem. (4)
- d) If $Q = 32K^{0.5}L^{0.4}$ and $K = 0.2L^2$, what is the total change in L and Q? Identify the direct and indirect effects. (4)
- e) If utility function is given by $U = f(x, y) = 8x^2 5xy + 6y^2$, where $x = g(y) = \frac{1}{y}$.

Find the total change in commodity y on the utility function of the consumer. (4)

f) Find the derivative of the function $x^3 + x^2y + 4y^2 = 6$ (4)

Question 4

- a) What is the sign definiteness of the quadratic function $-x_1^2 x_2^2$? (4)
- b) Suppose that both the of capital at time t, K=K (t), and that the efficiency with which it is used affect GNP according to the function $y = f(k, t) = 0.2(1 + t)^{1/2}$ k where $k = k_0 e^{0.05t}$

Find and give the economic intuition of the derivative:

$$\frac{dy}{dt} = f_t + f_k \frac{dk}{dt} \tag{8}$$

(5)

- c) Find the derivative of $x^2y^3 + 3xy^2 + y = 22$
- d) Find the stationary values of the following functions and use second -order conditions to determine which give maxima, minima or saddle points:

i)
$$y = x_1 + x_2 - x_1^2 - x_2^2 + x_1 x_2$$
 (6)

ii)
$$y = 2x_1x_2 - x_1^3 - x_2^2$$
 (6)

Question 5

a) The total revenue and total cost functions of a monopolist given by:

$$TR = 29Q - 3Q^2$$
$$TC = \frac{Q^3}{3} - 6Q^2 + 2Q + 40$$

- i) Find the profit maximizing output.
- ii) What is the maximum profit? (2)

(6)

(5)

b) Minimize a firm's cost function $c(l, k) = 3l^2 + 5lk + 6k^2$, where l = labour and k = capital, when the firm must meet a production quota of <math>5l + 7k = 732 by:

- i) Finding the critical values through Cramer's rule. (8)
- ii) Using the Bordered Hessian to test for the second-order conditions. (4)
- c) Consider the demand equation: p = -0.5x + 50 ($0 \le x \le 100$), which describes the relationship between the unit price p in Maloti and the quantity demanded x of noodles.

Find the elasticity of demand E(p) at p = 25. (5)

Question 6

The constant elasticity of substitution (CES) production function is given by

$$F(K,L) = (aK^{-\beta} + bL^{-\beta})^{-1/\beta} \qquad (a > 0, b > 0) \text{ where } a, b \text{ and } \beta \text{ are constants}$$

- a) Show that it is homogeneous of degree 1.
- b) Is the marginal product of capital a homogeneous function? If homogeneous, what is its degree of homogeneity?
 (7)

c)	Verify that the CES production function satisfies Euler's theorem.	(8)
d)	Calculate the elasticity of substitution for the CES production function.	(5)