NATIONAL UNIVERSITY OF LESOTHO FACULTY OF AGRICULTURE

DEPARTMENT OF SOIL SCIENCE AND RESOURCE CONSERVATION

SSR 4601: SOIL SURVEY AND LAND EVALUATION

Programme: BSc. Agriculture (Soil Science)

JANUARY 2023 100 MARKS 3 HOURS

INSTRUCTIONS

ANSWER ALL QUESTION

ALL QUESTION CARRY EQUAL MARKS [25 MARKS]

Question 1 [25 marks]

a) Give two definitions of soil survey.

[5 marks]

- b) Mention two (2) types of soil surveys and state any two (2) advantages and two (2) disadvantages of each. [10 marks]
- c) Five soil survey projects were conducted. The aim for each project is shown in the table below. Indicate the type of soil survey required for each aim. [10 marks]

Aims	Type of survey
Project 1: Classify the soils and delineate their location and extent, evaluate their problems and potentials and prepare interpretative maps on soils and land resources	
Project 2: To provide general information on the nature and distribution of the soils in arable and potential arable areas	
Project 3: To assess the suitability of the soils for selected, climatically adapted crops	
Project 4: Identification of contaminated soils and possible remedial strategies.	
Project 5: Mapping soil acidity at NUL farm	

Question 2 [25 marks]

a)	One of the	principles	of soil	survey	is tha	t <u>Land</u>	resources	do	not	consists	of	soils
	alone. Elab	orate this p	orincipl	e.						[6	ma	rks]

b) Mention any other two principles of soil survey.

[4 marks]

c) Discuss the following scales as recognized for soil surveys and maps:

i. Reconnaissance surveys

[5 marks]

ii. Detailed surveys

[5 marks]

iii. Intensive surveys

[5 marks]

QUESTION 3 [25 MARKS]

a) What is remote sensing?

[2 marks]

b) Mention any four (4) importance of aerial photograph in soil survey.

[8 marks]

c) Describe how tone of an aerial photograph is used to identify land features. [10 marks]

d) List five (5) other properties of aerial photographs.

[5 marks]

QUESTION 4 [25 MARKS]

a) Define the following:

[4 marks]

Land suitability evaluation

Land capability classification

- b) In Land Capability Classification (LCC), what is the criterion for classifying arable and non-arable soils? [6 marks]
- c) A land suitability evaluation was conducted for watermelon production at a particular place. Results of the evaluation using non-parametric method are shown in Table 1 (next page). As a soil scientist, study the results and provide recommendations to the client interested in producing watermelon in this place. [15 marks]

Table 1: Land suitability Evaluation Results for Watermelon

Land Qualities/ Characteristics	Units	Non-parametric method						
Climate (c)								
Annual Rainfall	mm	S3						
Mean Annual Temp	°C	S1						
Topography (t)								
Slope	%	S1						
Wetness (w)								
Drainage		S1						
Soil Physical Characters (s)								
Soil Depth	cm	S1						
Texture		S1						
Fertility Status (f)								
Total. N	%	S2						
Available P	Mg/kg	S 3						
Exchangeable K	cmol/kg	S3						
рН		S 3						
CEC	cmol/kg	S2						
Base Saturation	(%)	S1						
Aggregate Suitability								
Actual (current)		S3-f, c						
Potential		S2-f						