National University of Lesotho

Faculty of Agriculture

BSc Crop Science

CPS 4508: Crop Physiology

<u>Date: June 2023</u> <u>Final Examinations</u> <u>Total time 3hrs</u>

Total Marks: 100

Instructions to candidate

- a) Answer ANY FOUR Questions.
- b) Each Question Carries **25 Marks**.

-----GOODLUCK!!-----

QUESTION 1 (25 Marks)

1.1. In plant water relations, **contrast how** bulk flow differs from diffusion using equations.

[10]

1.2. Explain the concept of plant-water relations and how it represents a compromise.

[5]

1.3 Identify and describe two main pathways by which water can move from the soil to the roots or from cell to cell everywhere in the plant. [10]

QUESTION 2 (25 Marks)

- **2.1a.** Irradiance impinging upon a surface depends on 4 parameters. **<u>List</u>** and **<u>show</u>** how they influence RUE and later Crop Productivity? [20]
- **2.2.** In Lesotho, new agricultural policies, encourages <u>commercial farming</u>, therefore if followed, and right agronomic practices practiced, <u>commercial yield</u> is inevitable. <u>Crop productivity</u> depends on all the terms at the right of the equation of <u>commercial yield</u>.

$Yc = (Qi \times \Phi \times \epsilon - R) HI.$

Where Yc is commercial yield

Y = total biomass yield

Qi = incident PAR

 Φ = proportion of Qi absorbed by the crop

 ε = conversion efficiency of absorbed PAR in biomass (RUE = radiation use efficiency)

R = respiration loss/cost

2.2a. Explain clearly how these agronomic practices can influence RUE and later Yc for wheat winter cropping at Leribe, Kolonyama Ha Manama. [5]

QUESTION 3 (25 Marks)

3.1. Give the formulae and abbreviations of the following indices and explain how growth measurements is done using each of them.

a)	Crop Growth Rate	[5]
b)	Relative Growth Rate	[5]
c)	Leaf Area Ratio	[5]
d)	Net Assimilation Rate	[5]
e)	Dry Matter Efficiency	[5]

QUESTION 4 (25 Marks)

matter	plain why the growth curve typically makes a transition from exponential to linear accumulation early in the season (i.e., what is physically happening with respect to structure and activity that causes the curve to have this shape?).	•
	ny does the rate of crop dry matter accumulation decline near the end of the season, canopy interceptions of incident PAR remain high?	[6]
4.3 . De	efine the concept of an Ideotype crop.	[5]
	4.4 Why a crop ideotype development must consider genotype by environment interaction formula?	
QUES'	TION 5 (25 Marks)	
5.1 Det	fine the following <u>phrases</u> as used in <u>Crop Physiology</u>	
a)	Photosynthetic efficiency.	[5]
b)	Photosynthetically Active Radiation.	[5]
c)	Radiation Use Efficiency	[5]
d)	Leaf boundary layer resistance	[5]
e)	Plant Canopy architecture and Photosynthesis	[5]