NATIONAL UNIVERSITY OF LESOTHO FACULTY OF HEALTH SCIENCES DEPARTMENT OF PHARMACY BACHELOR OF PHARMACY (HONOURS) PHA 3401 – PHARMACEUTICAL ANALYSIS SUPPLEMENTARY EXAMINATION

AUGUST 2023 TIME: 3 HOURS TOTAL: 100 MARKS

INSTRUCTIONS:

- THIS PAPER CONSISTS OF 5 QUESTIONS, EACH CARRYING 20 MARKS
- ANSWER ALL QUESTIONS
- START EACH QUESTION ON A NEW PAGE
- MARKS ARE SHOWN IN PARENTHESIS AT THE END OF EACH QUESTION

Question 1 [20 marks]

- a. Define the following terms
 - i. Buffer
 - ii. Analyte
 - iii. Sampling
 - iv. Equivalence point
 - v. Standard deviation
 - vi. Significance level
- vii. Primary standard
- viii. Complexiometric titration
- b. Identify the following laboratory consumables and give **one** function of each [12]

i.

[8]

ii.

iii

iν

Question 2 [20 marks]

a. A quantitative determination of paracetamol in an oral solution with a specified content of 24 mg/mL, gave the following results when six individual measurements were conducted:

Measurement No	Quantity (mg/ml)
1	21.6
2	23.1
3	23.2
4	23.3
5	23.6
6	23.7

i.	If it is necessary.	reject the outlying	data at 95% confidence	level using the Q-test
		TO TO THE TIME TO THE TENT OF	data at 0070 comingones	

ii. Calculate the mean of the paracetamol [2]

[-]

iii. Calculate the standard deviation. [2]

iv. Calculate the confidence interval at 95 % confidence level. [2]

b. 200 ml of a 0.25 M sodium borate (NaB) buffer with pH 8.0 was prepared. Then 20 ml of 0.1 M HCl was added to it. Given that boric acid pKa is 9.14, calculate:

i. The pH of the new buffer solution. [8]

ii. Molarity of the new buffer solution.

[1]

Question 3 [20 marks]

a. A thymol mouth wash is formulated by adding 127.78 mg (0.12778g) of thymol in mixture of ethanol (96%v/v) and methanol, and the solution is dissolved in 20 ml of water. The density of water is 0.997044 g/ml at room temperature 25 °C and the molecular weight of thymol (C₁₀H₁₄O) is 150.217 g/mol.

- i. Calculate the molarity of the solution. [3]
- ii. Calculate the molality of the solution. [3]
- iii. Express the concentration of the solution in % w/v [2]
- iv. Express the concentration of the solution in ppm. [2]
- b. What mass of AgNO₃ (169.9 g/mol) is needed to convert 2.33 g of Na₂CO₃ (106.0 g/mol) to Ag₂CO₃? What mass of Ag₂CO₃ (275.7 g/mol) will be formed? [6]
- c. Calculate the molar analytical concentration of Na₂CO₃ in the solution produced when 25.0 ml of 0.200 M AgNO₃ is mixed with 50.0 ml of 0.0800 M Na₂CO₃? [4]

Question 4 [20 marks]

- a. Ni²⁺ can be analyzed by indirect titration, using standard Zn²⁺ at pH 5.5 with xylenol orange indicator. A solution containing 50.00 ml of Ni²⁺ in dilute HCl is treated with 50.00 ml of 0.1057 M Na₂EDTA. The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.04598 M Zn²⁺ requires 35.22 ml to reach the red end point. What is the molarity of Ni²⁺ in the unknown?
- b. 50.0 mL of a 0.0200 M metal Mn²⁺ solution is titrated with 0.020M EDTA at pH 9.00. The value of log K for the complex is 14.30 and α Y⁴⁻ is 5.4 x 10⁻².
 - i. Describe any two types of Complexiometric titrations . [4]
 - ii. Calculate the missing pMn²⁺ in the table below. [4,4,4]

mL	0.00	25.0	49.9	50.0	50.1	55.0
pMn ²⁺	1.70		4.70		10.30	

Question 5 [20 marks]

a. A 2.00-g sample of dolomite, a calcium supplement, was dissolved in hydrochloric acid (HCl). To the resulting solution was added excess ammonium oxalate ((NH₃)₂C₂O₄) that precipitated calcium as calcium oxalate (CaC₂O₄). The precipitate was filtered then placed together with the filter paper in a 30.1025-g crucible. This was then ignited and weighed several times to a constant weight as 30.7100g CaO.

- i. Why was the precipitate ignited? [3]
- ii. What is the benefit of converting and using the precipitate as CaO? [1]
- iii. Calculate the percentage content of Ca in the supplement. [7]
- b. A 50 ml aliquot of 0.05 M NaCN (Ka for HCN = 6.2×10^{-10}) is titrated with 0.100 M HCl at the following acid volumes:

Va (ml)	10.0	25.0	26.0
рН			

i. From the provided data, calculate the pH of the solution at all titration volumes [9]

Appendix

Formulas

$$Molarity = \frac{moles\ of\ solute}{volume\ of\ solution\ in\ litres\ (L)} \qquad Molality = \frac{moles\ of\ solute}{mass\ of\ solvent\ in\ lkilograms\ (kg)}$$

$$parts\ per\ million = \frac{mass\ of\ solute}{mass\ of\ sample}\ X\ 10^6 \qquad parts\ per\ billion = \frac{mass\ of\ solute}{mass\ of\ sample}\ X\ 10^9$$

$$\bar{x} = \frac{x_1 + x_2 + x_3 \dots x_n}{n} = \sum_i \frac{x_i}{n} \qquad s = \sqrt{\frac{\sum_{i=1}^{i=n} (x_i - \bar{x})^2}{n-1}} \qquad \mu = \bar{x} \pm \frac{t \cdot s}{\sqrt{n}} \quad Q_{calculated} = \frac{|x_i - x_{critical}|}{|x_1 - x_{critical}|}$$

Weight percent =
$$\%(w/w) = \frac{mass\ of\ solute}{mass\ of\ solution}\ X\ 100\%$$

Volume percent =
$$\%(v/v) = \frac{volume\ of\ solute}{volume\ of\ solution}\ X\ 100\%$$

Weight volume percent =
$$\%(w/v) = \frac{mass\ of solute\ (g)}{volume\ of\ solution\ (ml)}\ X\ 100\%$$

Values of student's t

Degree of freedom (n-1)	Confidence level									
ireedoiii (ii-1)	80%	90%	95%	99%	99.9%					
1	3.08	6.31	12.7	63.7	637					
2	1.89	2.92	4.30	9.92	31.6					
3	1.64	2.35	3.18	5.84	12.9					
4	1.53	2.13	2.78	4.60	8.61					
5	1.48	2.02	2.57	4.03	6.87					
6	1.44	1.94	2.45	3.71	5.96					
7	1.42	1.90	2.36	3.50	5.41					
8	1.40	1.86	2.31	3.36	5.04					
9	1.38	1.83	2.26	3.25	4.78					
10	1.37	1.81	2.23	3.17	4.59					
15	1.34	1.75	2.13	2.95	4.07					
20	1.32	1.73	2.09	2.84	3.85					
40	1.30	1.68	2.02	2.70	3.55					
60	1.30	1.67	2.00	2.62	3.46					
ω	1.28	1.64	1.96	2.58	3.29					

Q-values for Q-test

Number of	Confidence le	Confidence level									
measurements	90%	95%	99%								
3	0.94	0.98	0.99								
4	0.76	0.85	0.93								
5	0.64	0.73	0.82								
6	0.56	0.64	0.74								
7	0.51	0.59	0.68								
8	0.47	0.54	0.63								
9	0.44	0.51	0.60								
10	0.41	0.48	0.57								

Values for EDTA

Table 13-1	Values of α _{Y4} - for				
EDTA at 20	$^{\circ}$ C and $\mu = 0.10$ M				

pН	$\alpha_{\mathrm{Y}^{4-}}$
0	1.3×10^{-23}
1	1.9×10^{-18}
2	3.3×10^{-14}
2 3	2.6×10^{-11}
4	3.8×10^{-9}
5	3.7×10^{-7}
6	2.3×10^{-5}
7	5.0×10^{-4}
8	5.6×10^{-3}
9	5.4×10^{-2}
10	0.36
11	0.85
12	0.98
13	1.00
14	1.00

Table 13-2 Formation constants for metal-EDTA complexes

Ion	$\log K_{\mathrm{f}}$	Ion	$\log K_{\rm f}$	Ion	$\log K_{\mathrm{f}}$
Li ⁺	2.79	Mn ³⁺	25.3 (25°C)	Ce ³⁺	15.98
Na ⁺	1.66	Fe ³⁺	25.1	Pr ³⁺	16.40
K^+	0.8	Co3+	41.4 (25°C)	Nd^{3+}	16.61
Be ²⁺	9.2	Zr ⁴⁺	29.5	Pm ³⁺	17.0
Mg^{2+}	8.79	Hf^{4+}	$29.5 (\mu = 0.2)$	Sm ³⁺	17.14
Ca ²⁺	10.69	VO ²⁺	18.8	Eu ³⁺	17.35
Sr^{2+}	8.73	VO_2^+	15.55	Gd^{3+}	17.37
Ba ²⁺	7.86	Ag ⁺	7.32	Tb ³⁺	17.93
Ra ²⁺	7.1	T1+	6.54	Dy ³⁺	18.30
Sc^{3+}	23.1	Pd ²⁺	18.5 (25°C,	Ho^{3+}	18.62
Y^{3+}	18.09		$\mu = 0.2$)	Er3+	18.85
La ³⁺	15.50	Zn ²⁺	16.50	Tm^{3+}	19.32
V^{2+}	12.7	Cd ²⁺	16.46	Yb^{3+}	19.51
Cr2+	13.6	Hg ²⁺	21.7	Lu ³⁺	19.83
Mn ²⁺	13.87	Sn ²⁺	$18.3 (\mu = 0)$	Am^{3+}	17.8 (25°C)
Fe ²⁺	14.32	Pb ²⁺	18.04	Cm ³⁺	18.1 (25°C)
Co^{2+}	16.31	Al^{3+}	16.3	Bk3+	18.5 (25°C)
Ni ²⁺	18.62	Ga ³⁺	20.3	Cf ³⁺	18.7 (25°C)
Cu^{2+}	18.80	In ³⁺	25.0	Th ⁴⁺	23.2
Ti3+	21.3 (25°C)	Tl3+	$37.8 (\mu = 1.0)$	U^{4+}	25.8
V^{3+}	26.0	Bi ³⁺	27.8	Np ⁴⁺	24.6 (25°C, $\mu = 1.0$)
Cr3+	23.4			1077	

The Periodic Table of the Elements

1	1																2
1																	2
H																	He
Hydrogen 1.00794																	Helium 4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.989770	24.3050	21	22	22	24	25	26	27	20	20	20	26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	\mathbf{Cr}	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
		_															
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				, ,
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						