NATIONAL UNIVERSITY OF LESOTHO
 FACULTY OF HEALTH SCIENCES
 DEPARTMENT OF PHARMACY
 BACHELOR OF PHARMACY (HONOURS)
 PHA 3401 - PHARMACEUTICAL ANALYSIS
 SUPPLEMENTARY EXAMINATION

AUGUST 2023
TIME: 3 HOURS
TOTAL: 100 MARKS
INSTRUCTIONS:

- THIS PAPER CONSISTS OF 5 QUESTIONS, EACH CARRYING 20 MARKS
- ANSWER ALL QUESTIONS
- START EACH QUESTION ON A NEW PAGE
- MARKS ARE SHOWN IN PARENTHESIS AT THE END OF EACH QUESTION

Question 1

a. Define the following terms
i. Buffer
ii. Analyte
iii. Sampling
iv. Equivalence point
v. Standard deviation
vi. Significance level
vii. Primary standard
viii. Complexiometric titration
b. Identify the following laboratory consumables and give one function of each

i.

iii

ii.

iv

vi.

Question 2

a. A quantitative determination of paracetamol in an oral solution with a specified content of $24 \mathrm{mg} / \mathrm{mL}$, gave the following results when six individual measurements were conducted:

Measurement No	Quantity $(\mathrm{mg} / \mathrm{ml})$
1	21.6
2	23.1
3	23.2
4	23.3
5	23.6
6	23.7

i. If it is necessary, reject the outlying data at 95% confidence level using the Q-test.
ii. Calculate the mean of the paracetamol
iii. Calculate the standard deviation.
iv. Calculate the confidence interval at 95% confidence level.
b. 200 ml of a 0.25 M sodium borate (NaB) buffer with pH 8.0 was prepared. Then 20 ml of 0.1 M HCl was added to it. Given that boric acid pKa is 9.14 , calculate:
i. The pH of the new buffer solution.
ii. Molarity of the new buffer solution.

Question 3

a. A thymol mouth wash is formulated by adding $127.78 \mathrm{mg}(0.12778 \mathrm{~g})$ of thymol in mixture of ethanol ($96 \% \mathrm{v} / \mathrm{v}$) and methanol, and the solution is dissolved in 20 ml of water. The density of water is $0.997044 \mathrm{~g} / \mathrm{ml}$ at room temperature $25^{\circ} \mathrm{C}$ and the molecular weight of thymol $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}\right)$ is $150.217 \mathrm{~g} / \mathrm{mol}$.
i. Calculate the molarity of the solution.
ii. Calculate the molality of the solution.
iii. Express the concentration of the solution in \% w/v
iv. Express the concentration of the solution in ppm.
b. What mass of $\mathrm{AgNO}_{3}(169.9 \mathrm{~g} / \mathrm{mol})$ is needed to convert 2.33 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}(106.0$ $\mathrm{g} / \mathrm{mol})$ to $\mathrm{Ag}_{2} \mathrm{CO}_{3}$? What mass of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(275.7 \mathrm{~g} / \mathrm{mol})$ will be formed?
c. Calculate the molar analytical concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the solution produced when 25.0 ml of $0.200 \mathrm{M} \mathrm{AgNO}_{3}$ is mixed with 50.0 ml of $0.0800 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$?

Question 4

[20 marks]
a. Ni^{2+} can be analyzed by indirect titration, using standard Zn^{2+} at pH 5.5 with xylenol orange indicator. A solution containing 50.00 ml of Ni^{2+} in dilute HCl is treated with 50.00 ml of $0.1057 \mathrm{M} \mathrm{Na}_{2}$ EDTA. The solution is neutralized with NaOH , and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with $0.04598 \mathrm{M} \mathrm{Zn}^{2+}$ requires 35.22 ml to reach the red end point. What is the molarity of Ni^{2+} in the unknown?
b. 50.0 mL of a 0.0200 M metal Mn^{2+} solution is titrated with 0.020 M EDTA at pH 9.00 . The value of $\log \mathrm{K}$ for the complex is 14.30 and $\alpha \mathrm{Y}^{4-}$ is 5.4×10^{-2}.
i. Describe any two types of Complexiometric titrations
ii. Calculate the missing pMn^{2+} in the table below.

mL	0.00	25.0	49.9	50.0	50.1	55.0
pMn^{2+}	1.70		4.70		10.30	

Question 5

a. A 2.00-g sample of dolomite, a calcium supplement, was dissolved in hydrochloric acid (HCl). To the resulting solution was added excess ammonium oxalate $\left(\left(\mathrm{NH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ that precipitated calcium as calcium oxalate $\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right)$. The precipitate was filtered then placed together with the filter paper in a $30.1025-\mathrm{g}$ crucible. This was then ignited and weighed several times to a constant weight as 30.7100 g CaO .
i. Why was the precipitate ignited?
ii. What is the benefit of converting and using the precipitate as CaO ?
iii. Calculate the percentage content of Ca in the supplement.
b. A 50 ml aliquot of 0.05 M NaCN (Ka for $\mathrm{HCN}=6.2 \times 10^{-10}$) is titrated with 0.100 M HCl at the following acid volumes:

$\mathrm{Va}(\mathrm{ml})$	10.0	25.0	26.0
pH			

i. From the provided data, calculate the pH of the solution at all titration volumes

Appendix

Formulas

$$
\begin{gathered}
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in litres }(L)} \quad \text { Molality }=\frac{\text { moles of solute }}{\text { mass of solvent in lkilograms }(\mathrm{kg})} \\
\text { parts per million }=\frac{\text { mass of solute }}{\text { mass of sample }} \times 10^{6} \quad \text { parts per billion }=\frac{\text { mass ofsolute }}{\text { mass of sample }} \times 10^{9} \\
\bar{x}=\frac{x_{1}+x_{2}+x_{3} . . x_{n}}{n}=\sum_{i} \frac{x_{i}}{n} \quad s=\sqrt{\frac{\sum_{i=1}^{i=n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \quad \boldsymbol{\mu}=\bar{x} \pm \frac{t \cdot s}{\sqrt{n}} \quad Q_{\text {calculated }}=\frac{\left|x_{i}-x_{\text {critical }}\right|}{\left|x_{1}-x_{\text {critical }}\right|} \\
\text { Weight percent }=\%(w / w)=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100 \% \\
\text { Volume percent }=\%(v / v)=\frac{\text { volume of solute }}{\text { volume of solution }} \times 100 \% \\
\text { Weight volume percent }=\%(w / v)=\frac{\text { mass of solute }(g)}{\text { volume of solution }(m l)} \times 100 \%
\end{gathered}
$$

Values of student's t

Degree of freedom (n-1)	Confidence level				
	$\mathbf{8 0 \%}$	$\mathbf{9 0 \%}$	$\mathbf{9 5 \%}$	$\mathbf{9 9 \%}$	$\mathbf{9 9 . 9 \%}$
1	3.08	6.31	12.7	63.7	637
2	1.89	2.92	4.30	9.92	31.6
3	1.64	2.35	3.18	5.84	12.9
4	1.53	2.13	2.78	4.60	8.61
5	1.48	2.02	2.57	4.03	6.87
6	1.44	1.94	2.45	3.71	5.96
7	1.42	1.90	2.36	3.50	5.41
8	1.40	1.86	2.31	3.36	5.04
9	1.38	1.83	2.26	3.25	4.78
10	1.37	1.81	2.23	3.17	4.59
15	1.34	1.75	2.13	2.95	4.07
20	1.32	1.73	2.09	2.84	3.85
40	1.30	1.68	2.02	2.70	3.55
60	1.30	1.67	2.00	2.62	3.46
∞	1.28	1.64	1.96	2.58	3.29

Q-values for Q-test

Number of measurements	Confidence level			
	$\mathbf{9 0 \%}$	$\mathbf{9 5 \%}$	$\mathbf{9 9 \%}$	
3	0.94	0.98	0.99	
4	0.76	0.85	0.93	
5	0.64	0.73	0.82	
6	0.56	0.64	0.74	
7	0.51	0.59	0.68	
8	0.47	0.54	0.63	
9	0.44	0.51	0.60	
10	0.41	0.48	0.57	

Values for EDTA

Table 13-1 Values of $\alpha_{\mathrm{Y}^{4}}$ for EDTA at $20^{\circ} \mathrm{C}$ and $\mu=0.10 \mathrm{M}$	
pH	$\alpha_{\mathrm{Y}^{4-}}$
0	1.3×10^{-23}
1	1.9×10^{-18}
2	3.3×10^{-14}
3	2.6×10^{-11}
4	3.8×10^{-9}
5	3.7×10^{-7}
6	2.3×10^{-5}
7	5.0×10^{-4}
8	5.6×10^{-3}
9	5.4×10^{-2}
10	0.36
11	0.85
12	0.98
13	1.00
14	1.00

Ion	$\boldsymbol{\operatorname { l o g }} K_{f}$	Ion	$\boldsymbol{\operatorname { l o g }} K_{\text {f }}$	Ion	$\log K_{\text {f }}$
Li^{+}	2.79	Mn^{3+}	$25.3\left(25^{\circ} \mathrm{C}\right)$	Ce^{3+}	15.98
Na^{+}	1.66	Fe^{3+}	25.1	Pr^{3+}	16.40
K^{+}	0.8	Co^{3+}	$41.4\left(25^{\circ} \mathrm{C}\right)$	Nd^{3+}	16.61
Be^{2+}	9.2	Zr^{4+}	29.5	Pm^{3+}	17.0
Mg^{2+}	8.79	Hf^{4+}	$29.5(\mu=0.2)$	Sm^{3+}	17.14
Ca^{2+}	10.69	VO^{2+}	18.8	Eu^{3+}	17.35
Sr^{2+}	8.73	VO_{2}^{+}	15.55	Gd^{3+}	17.37
Ba^{2+}	7.86	Ag^{+}	7.32	Tb^{3+}	17.93
Ra^{2+}	7.1	Tl^{+}	6.54	Dy ${ }^{3+}$	18.30
Sc^{3+}	23.1	Pd^{2+}	$18.5\left(25^{\circ} \mathrm{C}\right.$,	Ho^{3+}	18.62
Y^{3+}	18.09		$\mu=0.2)$	Er^{3+}	18.85
La^{3+}	15.50	Zn^{2+}	16.50	Tm^{3+}	19.32
V^{2+}	12.7	Cd^{2+}	16.46	Yb^{3+}	19.51
Cr^{2+}	13.6	Hg^{2+}	21.7	Lu^{3+}	19.83
Mn^{2+}	13.87	Sn^{2+}	18.3 ($\mu=0)$	Am^{3+}	$17.8\left(25^{\circ} \mathrm{C}\right)$
Fe^{2+}	14.32	Pb^{2+}	18.04	Cm^{3+}	$18.1\left(25^{\circ} \mathrm{C}\right)$
Co^{2+}	16.31	Al^{3+}	16.3	Bk^{3+}	$18.5\left(25^{\circ} \mathrm{C}\right)$
Ni^{2+}	18.62	Ga^{3+}	20.3	Cf^{3+}	$18.7\left(25^{\circ} \mathrm{C}\right)$
Cu^{2+}	18.80	In^{3+}	25.0	Th^{4+}	23.2
Ti^{3+}	$21.3\left(25^{\circ} \mathrm{C}\right)$	Tl^{3+}	$37.8(\mu=1.0)$	U^{++}	25.8
V^{3+}	26.0	Bi^{3+}	27.8	$\mathrm{Np}{ }^{4+}$	$24.6\left(25^{\circ} \mathrm{C}, \mu=1.0\right)$
Cr^{3+}	23.4				

The Periodic Table of the Elements

1 \mathbf{H} Hydogena 1.00794																	$\begin{gathered} 2 \\ \stackrel{2}{\text { Hetilim }} \\ 4.003 \end{gathered}$
3	4											5	6	7	8	9	10
$\underset{\substack{\text { Linimu } \\ 6.941}}{\mathbf{L i}}$	$\underset{\substack{\text { Bengilim } \\ 9.012182}}{\text { Bee }}$											$\underset{\substack{\text { Baxan } \\ 10.811}}{\text { B }}$	$\underset{\substack{\text { Catoon } \\ 122.0107}}{\mathbf{C}}$	$\underset{\substack{\text { Ningogen } \\ 14.00674}}{\mathbf{N}}$	$\underset{\substack{\text { Oxyen } \\ 15.9992}}{\mathbf{O}}$	$\underset{\substack{\text { Fincine } \\ 18.998432}}{\mathbf{F}}$	$\underset{\substack{\text { Nen } \\ 20.1797}}{\text { Ne }}$
11	12											13	14	15	16	17	18
$\left.\begin{array}{\|c\|} \hline \text { sadim } \\ \text { 22.989770 } \end{array} \right\rvert\,$	$\underset{\substack{\text { Maggenimm } \\ \text { 24.300 }}}{\mathbf{M g}}$											$\underset{\substack{\text { Ahamimm } \\ \text { 26.98158 }}}{\text { Al }}$	$\underset{\substack{\text { Silicion } \\ 28.0855}}{\mathbf{S i}}$	$\underset{\substack{\text { phapphans } \\ 30.973761}}{ }$	$\underset{\substack{\text { suffur } \\ 32.066}}{\mathbf{S}}$	$\underset{\substack{\text { Charine } \\ 35.4527}}{\text { Cl }}$	$\underset{\substack{\text { Argen } \\ 39.948}}{\mathbf{A r}}$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
${ }_{\substack{\text { Ppuassium } \\ 39.0983}}^{\text {a }}$	Calaim 40.078	${ }_{\substack{\text { Samaium } \\ 44.95910}}^{\text {and }}$		${ }_{\substack{\text { Vamadium } \\ \text { S0.9415 }}}^{\text {a }}$		${ }_{\substack{\text { Mangesese }}}^{\text {S4.93049 }}$		${ }_{58}^{\text {coabint }}$	$\begin{gathered} \text { Niselel } \\ 58 \cdot 693 \end{gathered}$	${ }_{\substack{\text { Copper } \\ 6354}}^{\text {cis }}$	$\begin{gathered} \operatorname{zinim}_{6.39} \\ \hline 1 \end{gathered}$	${ }_{\substack{\text { Gallimm } \\ 69.723}}^{\text {and }}$	${ }_{7}^{\text {Cemanaim }}$	${ }_{74}^{\text {Argenemic }}$	${ }_{\substack{\text { seaeimm } \\ 78.96}}$		(kypun
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
$\underbrace{}_{\substack{\text { Rubidium } \\ 854678}}$	${ }_{\substack{\text { Stronium } \\ 87.62}}$	$\begin{gathered} \text { Yrimim } \\ 88.00585 \end{gathered}$	$\underset{\substack{Z_{1 i r c o i u m} \\ 91.224}}{ }$	${ }_{\text {g2 }}$	$\begin{aligned} & \text { Malybiden } \\ & 95.94 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Technetium } \\ (98) \end{gathered}$	Runkenium 101.07	$\begin{gathered} \text { Repdium } \\ \text { 1029055 } \end{gathered}$	$\xlongequal{\substack{\text { Pulladium } \\ \text { 106.42 }}}$	$\underset{\substack{\text { sink } \\ 107862}}{7}$	$\begin{gathered} \text { Casimium } \\ 1122.411 \end{gathered}$	${ }_{\text {Indium }}^{\substack{\text { Indium } \\ \text { 118 }}}$	$\underset{\substack{\text { Tim } \\ 118.710}}{ }$	${ }_{\text {Andimary }}^{\text {And }}$	$\begin{aligned} & \text { Telhinim } \\ & 127.60 \end{aligned}$		(Xeon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
$\underset{\substack{\text { cesium } \\ 132.9545}}{\text { cosem }}$			${ }_{\text {Hatimm }}^{178.49}$	${ }_{\text {T }}^{\substack{\text { Tarathum } \\ 18049}}$	${ }_{\text {chen }}^{\substack{\text { Tugsten } \\ 183.84}}$		${ }_{\substack{\text { Omimu } \\ 190.23}}^{\text {Os, }}$	${ }_{19}^{\text {Indimu }}$	${ }_{\substack{\text { Phatimm } \\ 195.078}}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 60.9655 \end{array}$	${ }_{200.59}^{\text {Meact }}$		${ }_{\substack{\text { Leed } \\ 2072}}$	${ }_{\substack{\text { Bisamin }}}^{\text {208.9038 }}$	$\underbrace{}_{\substack{\text { Poladimm } \\(209)}}$	${ }_{\substack{\text { Astamine } \\(210)}}$	${ }_{\substack{\text { Radan } \\ \text { (22) }}}$
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
$\underbrace{}_{\substack{\text { Francium } \\(223)}}$	${ }_{\substack{\text { Radium } \\(220)}}^{\text {Ra }}$	${ }_{\text {A }}{ }_{\text {Achinimm }}$		${ }_{\substack{\text { Dundium } \\ \text { (262) }}}$		$\frac{\text { Bedinim }}{(262)}$	$\begin{aligned} & \text { Hascium } \\ & (265) \end{aligned}$	${ }_{\text {M }}^{\substack{\text { Meturaim } \\(266)}}$	(269)	(272)	(27)						

