NATIONAL UNIVERSITY OF LESOTHO

FACULTY OF SCIENCE & TECHNOLOGY

DEPARTMENT OF CHEMISTRY & CHEMICAL TECHNOLOGY

BSc, BSc CHEM. TECH & BSc Ed FINAL EXAMINATION

C2730: ORGANIC CHEMISTRY I

June 2023	Marks: 100	Time: 3 Hours		
Instructions				

This question paper contains six (6) questions, each carrying a total of 25 marks. The number of marks for each section of a question are indicated in brackets to the right of each section.

Answer Any Four (4) Questions

Begin each question on a fresh page, and write neatly

Question One

(a) Name the following compounds by the IUPAC system:

[8 Marks]

(b) Equation 1 below shows one of the common reactions of alkenes. The reaction involves the conversion of an alkene to an alcohol by acid-catalysed hydration.

$$\begin{array}{c} CH_{3} \\ H_{2}SO_{4} \end{array} \qquad \begin{array}{c} CH_{3} \\ H_{2}SO_{4} \end{array} \qquad \begin{array}{c} CH_{3} \\ H_{3}CH_{2}-C-CH_{3} \\ H_{2}CH_{2}-C-CH_{3} \\ H_{2}CH_{3}-CH_{3}-CH_{3} \\ H_{2}CH_{3}-CH_{3}-CH_{3} \\ H_{2}CH_{3}-$$

 2- methyl-1-buttene
 2- methyl-2- butanol

 i) Provide a detailed mechanism for the above reaction.
 [5 Marks]

 ii) Write down the structure as well as the IUPAC name for the anti-Markovnikov's product of the reaction.
 [4 Marks]

(c) Show a reaction sequence for the synthesis of *trans*-3-heptene from ethyne, alkyl halides and other appropriate reagents. **[8 marks]**

Question Two

(a) Write down the **structure/s** for the main product/s of each of the following reactions. [10 Marks]

- (b) Give the structure that corresponds to each of the following IUPAC names. (i) 2-Methyl-1,3-butadiene
 - (ii) trans-4,5-Dimethyl-4-heptene
 - (iii) cis-1,2-Dibromocyclopentane
 - (iv) Ethanoic acid
 - (v) 1-Hepten-6-yne
 - (vi) n-Hexane
 - (vii) Propanone
 - (viii) Diethyl ether
 - (ix) Heptanal
 - (x) 2-Chloro-2,4-dimethylhexane

[10 Marks]

(c) When 2-heptyne was treated with aqueous sulphuric acid containing mercuric sulphate, two products, each having a molecular formula $C_7H_{14}O$, were obtained in approximately equal amounts.

(i) Propose the structures of these two products.	[4 Marks]
(ii) To which class of organic compounds do these products belong?	[1 mark]

Question Three

(a) Describe, giving observations and relevant reaction equations, a test that can be used to distinguish *n*-pentane from 1-pentene. [5 Marks]

(b) An unknown compound, **A**, rapidly decolorizes bromine solution. When **A** was subjected to ozonolysis, the products were butanone $(CH_3CH_2COCH_3)$ and propanal (CH_3CH_2CHO) .

i) A decolorizes bromine solution. What can you conclude about A ?	[1 mark]
ii) From the above information, suggest the structure of A, and name it	by the IUPAC
system.	[2 +2 marks]
iii) How many mole equivalents of hydrogen gas will react with A?	[1 mark]
iv) Write down a complete reaction equation for the ozonolysis of A.	[2 marks]

(c) Draw structures for all eight (8) isomeric alcohols of molecular formula $C_5H_{12}O$. [8 marks] (d) Copy and complete the following by filling in the missing links with the words 'reduced' or oxidised'. [4 Marks]

(i) Primary alcohols can be ______to aldehydes.

(ii) Ketones are normally ______to secondary alcohols

(iii) Alkenes can be ______ to carboxylic acids using acidic KMnO₄.

(iv) Alkenes are ______ to alkanes by hydrogenation.

Question Four

(a) 1-Pentyne and 2-pentyne are structural isomers of an alkyne of molecular formula C_5H_8 . 1-Pentyne is a terminal alkyne while 2-pentyne is a non-terminal alkyne. Fully describe, giving expected observations and chemical reactions, a chemical test that can be used to distinguish one of these isomers from the other. [5 marks]

(b) Draw an orbital diagram of allene, $H_2C=C=CH_2$. What hybridisation must the central carbon atom have to form two double bonds? [3+2 marks]

c) (i)	Sta	ate N	/larkc	ovniko	off's	rule.						[2	2 Marks]
(ii)	J	Use	the	rule	to	predict	the	main	product	of	a	reaction	between
me	thy	lcyc	lope	ntene	and	HBr.						[2	2 Marks]
(iii) Name the product by the IUPAC system.								[2	2 Marks]				

(d) Give the structures and IUPAC names for all isomeric alkanes of molecular formula C_5H_{12} . [6 Marks]

(e) Menthol is a cyclic alcohol. It has the following structure.

(i)	Name the alcohol by IUPAC system	[2 Marks]
(ii)	Classify it as primary, secondary or tertiary alcohol.	[1 Marks]

Question Five

(a) Give the functional group that distinguishes each of the following classes of organic compounds from one another. [4 marks]

- (i) Aldehydes
- (ii) Alkynes

(iii) Alkyl halides

(iv) Carboxylic acids

(b) The conversion of alcohols into alkyl halides by reaction with hydrogen halides is an example of a Nucleophilic Substitution Reaction. This kind of reaction can proceed by two different mechanisms depending on the structure of alcohol substrates used. Generally, primary alcohols are substituted via $S_N 2$ mechanism, while some secondary and tertiary react by $S_N 1$ mechanism. Consider the following reaction.

$$\begin{array}{ccc} CH_3 \\ HBr \\ CH_3-C-OH \\ CH_3 \\ CH_3 \end{array} \xrightarrow{HBr} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} + H_2O$$

(i) By which of the two mechanisms does the reaction proceed? [1 Marks](ii) Provide a detailed mechanism for the reaction. [4 Marks]

(c) Write down the structures for all **isomeric alkenes** of molecular formula C_5H_{10} (ignore *cis-, trans-* isomers). [5 marks]

(d) Write a **structural formula** and give the **systematic name** for each of the following:

(i) A ketone, C₄H₈O

(ii) An alcohol, C₄H₁₀O

(iii) A carboxylic acid, C₃H₆O₂

(iv) An ester, C₄H₈O₂.

(e) Describe the shape of sp^2 hybrid orbitals.

Question Six

(a) An unknown compound is either 2-methyl-2-propanol or 1-butanol. When a few drops of permanganate solution are added to it, the purple colour of permanganate fades and a brown precipitate of MnO_2 is formed.

(i) What is the identity of the unknown?	[2 Marks]
(ii) Explain your answer.	[3 marks]

(b) Explain, with illustrations, why alcohols generally have higher boiling points than alkanes of comparable molecular weight. [4 Marks]

(c) Give the **structure** as well as the **IUPAC name** for all tertiary alcohols with molecular formula $C_6H_{14}O$. [6 marks]

(d) When bromine reacts with cyclopentene, the observed product is 1,2dibromocyclopentane. The stereochemistry of this product indicates that an *anti*addition to the double bond has occurred. No *syn*-addition is observed. [4 marks]

Suggest a mechanism that accounts for the formation of this product.

(e) Mention one importance of each of the following classes of organic molecules.

- (i) Alcohols
- (ii) Alkenes

[2 marks]

[8 marks]

[3 marks]

(f) Classify each of the following reactions as an addition, elimination, substitution, oxidation or reduction reaction. [4 marks]

(i)
$$CH_3CH_2CH_2CH_2CH_2OH \xrightarrow{PCC} CH_3CH_2CH_2CH_2CO_2H$$

(ii)
$$H + Br_2 \xrightarrow{\text{light}} Br + HBr$$

(iii)
$$CH_3CH_2CH_2-C-CH_3 \xrightarrow{1. LiAlH_4} CH_3CH_2CH_2CH(OH)CH_3$$

2. H_3O^+

(iv)
$$CH_3-CH-CH-CH_3 \xrightarrow{CH_3O^-Na^+} CH_3CH=C(CH_3)_2$$

 Br CH_3OH

~END OF PAPER~