NATIONAL UNIVERSITY OF LESOTHO FACULTY OF SCIENCE AND TECHNOLOGY

Department of Chemistry and Chemical Technology BSc, BSc Chem. Tech. And BSc Ed Final Examination C3740– Physical Chemistry II

June 15, 2023

Duration: 3 hours

This Exam contains 5 pages (including this cover page) and 5 questions. Total of points is 80. Page 2 contains the table of physical constants and the periodic table is on page 3. Good luck!

Distribution of Marks

Question:	1	2	3	4	5	Total
Points:	20	20	20	15	5	80

Quantity	Symbol	$Value^{a,b}$	Units
Acceleration due to gravity	g	9.80665 (exact)	m s ⁻²
Speed of light in vacuum	c	299 792 458 (exact)	${ m m}~{ m s}^{-1}$
Permeability of vacuum	$oldsymbol{\mu}_0$	$4\pi \times 10^{-7} \text{ (exact)}$ = 12.566 370 614	${ m N~A^{-2}} \ { m 10^{-7}~N~A^{-2}}$
Permittivity of vacuum	ϵ_0	$1/\mu_0 c^2$ (exact) = 8.854 187 817	$C^2 N^{-1} m^{-2}$ $10^{-12} C^2 N^{-1} m^{-2}$
Planck constant	h	6.626 075 5(40)	$10^{-34} \ \mathrm{J \ s}$
$h/2\pi$	\hbar	1.054 572 66(63)	$10^{-34} \ { m J \ s}$
Elementary charge	e	1.602 177 33(49)	10^{-19} C
Bohr magneton, $e\hbar/2m_e$	$\mu_{ m B}$	9.274 015 4(31)	$10^{-24}~{ m J}~{ m T}^{-1}$
Nuclear magneton, eħ/2mp	$\mu_{ m N}$	5.050 786 6(17)	$10^{-27}~{ m J}~{ m T}^{-1}$
Rydberg constant, $m_e e^4/8h^3c\epsilon_0$	R_{∞}	10 973 731.534(13)	m^{-1}
Bohr radius, $h^2 \epsilon_0 / \pi m_e e^2$	a_0	0.529 177 249(24)	10^{-10} m
Hartree energy, $e^2/4\pi\epsilon_0 a_0$	$E_{ m h}$	4.359 748 2(26)	$10^{-18} \ { m J}$
Electron mass	m_{e}	9.109 389 7(54)	10^{-31} kg
Proton mass	$m_{ m p}$	1.672 623 1(10)	10^{-27} kg
Neutron mass	$m_{ m n}$	1.674 928 6(10)	10^{-27} kg
Deuteron mass	$m_{ m d}$	3.343 586 0(20)	10^{-27} kg
Avogadro constant	$N_{ m A}$	6.022 136 7(36)	10^{23} mol^{-1}
Atomic mass constant, $m_{\rm u} = (1/12)m(^{12}{\rm C})$	$m_{ m u}$	1.660 540 2(10)	10^{-27} kg
Faraday constant	F	96 485.309(29)	$C \text{ mol}^{-1}$
Gas constant	R	8.314 510(70)	$\mathrm{J} \; \mathrm{K}^{-1} \; \mathrm{mol}^{-1}$
		0.083 145 1	L bar K^{-1} mol ⁻¹
		1.987 216	$cal K^{-1} mol^{-1}$
		0.082 057 8	$L atm K^{-1} mol^{-1}$
Boltzmann constant, R/N_A	k	1.380 658(12)	$10^{-23}~{ m J}~{ m K}^{-1}$

^a E. R. Cohen and B. N. Taylor, The 1986 CODATA Recommended Values of the Fundamental Physical Constants. *J. Phys. Chem. Ref. Data* **17**:1795 (1988).

^b Digits in parentheses are the one-standard-deviation uncertainty in the last digits of the given value.

^c More recent values of physical constants are available on the Web site of the National Institute of Standards and Technology (http://physics.nist.gov/constants).

1. (a) Why are $\Delta_{fus}S$ and $\Delta_{vap}S$ always positive?

(3)

(3)

(5)

- (b) Under what conditions does the equality $\Delta S = \Delta H/T$ hold?
- (c) Calculate the change in entropy of 2.00 moles of $H_2O_{(l)}$ ($\bar{C}_p = 75.2 \ JK^{-1}mol^{-1}$) if it is heated from 10 °C to 95 °C. (4)
- (d) Assume a bottle contains 25 ml of H_2O (l) at 20 °C. What will be the volume of the H_2O (l) at 50 °C? Take the thermal expansion coefficient, $\alpha = 2.1 \times 10^{-4}~K^{-1}$. (5)
- (e) Derive the equation

$$\left(\frac{\partial (A/T)}{\partial T}\right)_{V} = -\frac{U}{T^{2}}$$

which is a Gibbs-Helmholtz equation for A.

- 2. (a) State the Clapeyron equation and explain how it is used to determine the slope of a phase boundary on a phase diagram. (5)
 - (b) The vapour pressure of solid ammonia in torr is found to obey the equation

$$ln(P/torr) = -\frac{4124.4 \ K}{T} - 1.81630 \ln(T/K) + 34.4834$$

from $146~{\rm K}$ to $195~{\rm K}$. Calculate the molar enthalpy of sublimation of ammonia in this temperature range. (5)

(c) Are the two P-T phase diagrams shown below likely to be observed for a pure substance? Explain your answer. Provide **separate answers** for both diagrams. (10)

3. (a) For an ideal binary solution that obeys Raoult's law, show that

$$P_{Tot} = P_B^* + X_A(P_A^* - P_B^*)$$

Sketch and label a plot of P_{Tot} vs X_A for such a solution.

- S_{A} for such a solution. (5)
- (b) At 325 K, pure toluene and haxane have vapour pressure of 1.42×10^4 Pa and 5.77×10^4 Pa, respectively.
 - (i) Calculate the mole fraction of hexane in the liquid mixture that boils at a pressure of 0.400 atm.
 - (ii) Calculate the mole fraction of hexane in the vapour that is in equilibrium with the liquid part of (a). (10)
- (c) In an ideal solution of A and B, 2.50 mol are in the liquid phase and 4.75 mol are in the gaseous phase. The overall composition of the system is $Z_A = 0.250$ and $X_A = 0.175$. Calculate Y_A .

Hint: Use the Lever rule for calculating amounts of vapour and liquid in coexistence region $n_{liq}^{tot}(Z_B - X_B) = n_{vap}^{tot}(Y_B - Z_B)$. (5)

4. (a) The gas phase decomposition of dimethyl ether (CH_3OCH_3) to methane (CH_4) , hydrogen (H_2) , and carbon monoxide (CO) is a first order reaction.

$$\mathrm{CH_{3}OCH_{3}}\left(\mathrm{g}\right) \rightarrow \mathrm{CH_{4}}\left(\mathrm{g}\right) + \mathrm{H_{2}}\left(\mathrm{g}\right) + \mathrm{CO}\left(\mathrm{g}\right)$$

Define the rate of reaction with respect to the pressure of the reactant.

- (b) The decomposition of N_2O_5 is an important process in tropospheric chemistry. The halflife for the first-order decomposition of this compound is 2.05×10^4 s. How long will it take for N_2O_5 to decay to 60% of its initial concentration? (5)
- (c) For the acid-catalyzed hydrolysis of penicillin, a NUL professor collected kinetic data and plotted ln(k) versus 1/T as a scatter plot. The resulting linear least squares curve has an equation of

$$\ln(k) = (-6300)\frac{1}{T} + 14.1$$

For this reaction, find the

(i) activation energy, Ea, and

(ii) pre-exponential factor, A. (5)

5. A sample of an isotope of francium initially has 128 moles of nuclides (at t = 0.0s). Only 8.0 moles of francium remain at t = 20s. At what time does the sample have only 2 moles of francium nuclides left?

Choose 1 answer:

A. t = 30s

B. t = 40s

C. t = 35s

D. t = 25s

Show your work for the answer chosen.

(5)

(5)