NATIONAL UNIVERSITY OF LESOTHO

Faculty of Agriculture

Department of Agricultural Economics \& ExtensionAEC 3303-12:
 Mathematical Economics-Final Examination

January 2024
Marks: 100
Time: 3 Hours

Instruction: Answer all questions

QUESTION 1

a) The supplier will start to supply a good when the price greater than M5 per unit is available. He or she will then increase output by 2 units for every unit increase in price.
i) Write down the equation of the supply function.
ii) Plot the supply function in the form $Q=f(P)$
[10]
b) The supply and demand functions for a particular market are given by the following equations:

$$
\begin{equation*}
P_{S}=Q^{2}+6 Q+9 \text { and } P_{d}=Q^{2}-10 Q+25 \tag{05}
\end{equation*}
$$

Find the equilibrium price and quantity algebraically.

QUESTION 2

A consumer has a given income, $\mathrm{M}=M 200$, which is spent on two goods, X and Y .
The prices of the goods are $\mathrm{Px}=\mathrm{M}_{4}$ and $\mathrm{P}_{\mathrm{y}}=\mathrm{M} 5$ respectively.
i) Deduce the equation of the budget constraint (4)
ii) Graph the budget constraint. (10)
iii) Explain each component of the budget constraint (6).

QUESTION 3

a) The output for a firm over time is given by the function,
$Q=\frac{t^{3}}{30}-\frac{t^{2}}{5}+\frac{3 t}{10}+120$
Determine the years in which output is at a maximum and a minimum.
b) Given a short run classical production function, $Q=3 L^{2}-0.1 L^{3}$
c) Find the values of Q for which MPL and APL are maximum.
d) Show that MPL curve passes through the maximum point of the APL curve, that is, $(\mathrm{MPL}=\mathrm{APL})$, when APL is at maximum $)$.

QUESTION 4

Given the demand function for a good, $\mathrm{P}=50-2 \mathrm{Q}$, while the total cost function is given by $\mathrm{TC}=160+2 \mathrm{Q}$.
a) Write down the equation for the total revenue (2), and for profit (3).
b) Sketch the total cost (5) and total revenue functions (5) on the same diagram.
c) Estimate in terms of Q the following, when the firm breaks even (4), and show profit and loss regions (6).
d) Determine the value of Q where profit is maximum (5), the maximum profit (5) and sketch the profit function (5)

