NATIONAL UNIVERSITY OF LESOTHO

FACULTY OF HEALTH SCIENCES

Department of Pharmacy

PHA 5305: ADVANCED TOPICS IN PHARMACY PRACTICE

JANUARY 2024 TIME: 3 HOURS 100 MARKS

Instructions:

- o The paper consists of seven (7) printed pages including the cover page
- o Answer all the questions
- o Begin every question on a **NEW PAGE**
- o The page consists of three questions

QUESTION ONE 40 MARKS

a) An open, randomized, parallel-group study was conducted to investigate whether asthmatic patients, considered adequately treated via pressurized metered-dose inhaler (pMDI), could be transferred to a corresponding nominal dose via turbohaler, an inspiratory flow-driven multidose dry powder inhaler. Calculate the incremental cost effectiveness ratio (ICER); show all calculations and formulae used.

Technology	Cost (M 1 million)	Incremental cost (M 1 million)	Effectiveness (QALY)	Incremental effectiveness (QALY)	ICER M1 million/ QALY
New technology	4		1.5		
Comparator	3	-	1.0	-	-

The ICER is regarded as being too large, what judgement do you place to the turbohaler regarding cost-effectiveness? **10 marks**

- b) NUL Pharmacy department intends to establish a retail pharmacy in campus. Based on the costs, a capital of M 65 000.00 is secured for this project. The project is expected to generate M100 000.00 in profit in the next 3 years. The rate of return based on inflation data is 2%. Calculate and interpret the cost-benefit ratio; show all calculations and formulae used. 10 marks
- c) **Scenario 1**: Supercare PTY (LTD) is a pharmaceutical distribution company seeking to venture into prepackaging of antiretroviral medicines into unit packs for patient dispensing. The company has secured supplier for the medicines in bulk. The company rents 40 tablet counting and packaging machines. Again the company hires 8 pharmacist technicians to oversee 5 machines each.

Scenario 2: Suprahealthcare PTY (LTD) is a pharmaceutical distribution company seeking to venture into prepackaging of antiretroviral medicines into unit packs for patient dispensing. The company has secured supplier for the medicines in bulk. The company rents 20 tablet counting and packaging machines. Again the company hires 20 pharmacist technicians to oversee 1 machine each.

Assumption: the productivity of these two companies is the same in terms of unit packs produced per day.

Additional information: 1 table counting packaging machine rent is M2 000.00 per month and hiring pharmacy technician is M1 500.00 per month.

Choose the appropriate cost analysis method and interpret the results; show all calculations. **10 marks**

d) Patients with chronic renal failure who are on hemodialysis suffer from profound anemia, which is often extremely debilitating. Historically, these patients have been managed by the use of blood transfusions. Now, synthetic erythropoietin is available. It is considered to be highly effective, but at a very high cost. Total costs to manage the 1000 patients for 1 year using blood transfusions is M3,128,000.00 Total costs to manage the 1000 patients for 1 year using erythropoietin is M5,547,100.00 So the alternatives are to either give erythropoietin or to give blood transfusions when the patient's "haemoglobin level is below 8g/dl. Utility data for the two alternatives available from the literature suggest that patients maintained on erythropoietin value their health states at a higher level than those maintained on blood transfusions. In a study, 100 patients stated that for a treatment period of 10 years, their utility value for each year (when valued from 0 to 1) on erythropoietin was 0.80, whereas on blood transfusions it was 0.75.

How many extra QALYs are produced by erythropoietin per year of treatment, for the 1000 patients? Calculate and interpret the incremental cost-utility ratio for erythropoietin; show all calculations. **10 marks**

QUESTION TWO 30 MARKS

You are a pharmacist working at the national pharmacovigilance unit; intending to undertake the causality of assessment of suspected renal impairment. In order to assess the likelihood that the suspected ADR is actually due to the pharmaceutical product, **discuss** the Bradford-Hill criteria under the following; citing the pharmacovigilance data below;

- a) Biological gradient
- b) Strength
- c) Consistency
- d) Temporality
- e) Plausibility
- f) Coherence

Name	Ag	M/	Treatment	ADR	Treatment	Date	Date of	Additional information	Laboratory tests
of	е	F				medici	reportin		
facility						ne	g		
						Started			
Maluti	33	NI	1.HCTZ25 mg,	Renal failure	TDF was	None	8/10/20	Tested HIV+ 2016 and	11/4/19 Creat 123,
			2.Nifedipine		switched to		21	started	ALT52, AST39. 8/10/20
			10mg od,		ABC, Patient			HAARTTDF/3TC/EFV.	AST 46, Cholesterol
			3.TDF/3TC/DTG		was given			Treated for TB in 2016	15.94,Urea 4.7
					Lactulose to			that was confirmed X-	01/10/21 ALP
					decrease			pert Rif-susceptible and	163,AST34,T-protein 63,
					amonium			completed in march	Albumin 51.5Creatinine
					compount			2017.Dignosed	297 Urea 6.4
								Hypertension in Dec	
								2018 and put on HCTZ	
								and Adalat later. Oct	
								2020 EFV was	
								substituted to DTG due	
								to phasing out of EFV.	

Berea	25	F	1.	Headache	None	None	24/8/21	None	None
Del ed			TDF/3TC/DTG	and	- None	110116	2 1, 0, 21	. Tonic	110110
			2. JandJ	generalised					
			Vaccine	body pain					
Leribe	31	М	1.TDF/3TC/DTG	Worsening	INH was	15/08/	27/8/21	A 31year old diagnosed	13/3/21X-Ray infiltration
			2.INH300mg, 3.	of coughing	stopped ATT	21		with Cardiomyopathy	and enlarged heart, RPR
			Furosemide20	after ART	was			and was initiated on	Neg WBC 3.11.22/8/21
			mg, 4.	initiation(Pa	initiated			HAART TDF/3TC/DTG on	X-pert +, Urine PH 5,
			Captopril25mg	radoxical				18/8/21. Presumptive	Protein Urea 3+, Rif-
				iris)				TB case gene-X-pert not	susceptible
								done when requested.	
								Chest X-Ray showed	
								bilateral lung	
								infiltration. Coughing	
								became worse after ART	
								and that of ART patient	
								came to hospital the	
								gene X-pert came out	
								positive and patient had	
								to start ATT.	
Ntshekh	33	NI	1.HCTZ 25mg	Renal failure	TDF was	1.26/9/	8/10/20	Patient tested +ve 2016	11/4/19 Crea123 Cr
е			2.Nifedipine		switched to	18	21	and started HAAR	73.9,ALT 52,AST 39
			10mg od		ABC, Patient	2.11/4/		TDF/3TC/EFV. Treated	8/10/20 AST 46
			3.TDF/3TC/DTG		was given	2019		TB in 2016 that was	Cholestrol 15.94, Urea 4.
					Lactulose to	3.10/2		confirmed X-pert Rif-	7/10/21 ALP 163,AST
					decrease	020		susceptible and	34,T-
					amonium			completed march 2017.	protein63,Albumin51.5,
					compount			Diagnosed hypertension	Urea 6.4
								19/12/18. October 2020	
								EFV was switched to	
								DTG due to phasing out	
								of DTG	

Mafete	39	NI	TDF/3TC/DTG	Vomiting,	Patient was	20/8/2	25/8/21	None	None
ng				waist pain,	switched to	021			
				coldness,	Kaletra				
				yellowish					
				sclera					

QUESTION THREE 30 MARKS

You are a pharmacist recently recruited in a hospital with no DUR program. You have made an observation that antibiotics are not properly used in this hospital. **Outline** the steps you would undertake in setting up a DUR program to address the problem observed gradually over a five-year period; using the information below to justify your steps, making some assumptions where necessary. **1 mark per step**

Access	This group includes antibiotics that have activity against a wide range of commonly encountered susceptible pathogens while also showing lower resistance potential than antibiotics in the other groups. Selected Access group antibiotics are recommended as essential first or second choice empiric treatment options for infectious syndromes reviewed by the EML Expert Committee and are listed as individual medicines on the Model Lists of Essential Medicines to improve access and promote appropriate use.
Watch	This group includes antibiotic classes that have higher resistance potential and includes most of the highest priority agents among the Critically Important Antimicrobials for Human Medicine ¹ and/or antibiotics that are at relatively high risk of selection of bacterial resistance. These medicines should be prioritized as key targets of stewardship programs and monitoring. Selected Watch group antibiotics are recommended as essential first or second choice empiric treatment options for a limited number of specific infectious syndromes and are listed as individual medicines on the WHO Model Lists of Essential Medicines.
Reserve	This group includes antibiotics and antibiotic classes that should be reserved for treatment of confirmed or suspected infections due to multi-drug-resistant organisms. Reserve group antibiotics should be treated as "last resort" options. Selected Reserve group antibiotics are listed as individual medicines on the WHO Model Lists of Essential Medicines when they have a favourable risk-benefit profile and proven activity against "Critical Priority" or "High Priority" pathogens identified by the WHO Priority Pathogens List ¹ . These antibiotics should be accessible, but their use should be tailored to highly specific patients and settings, when all alternatives have failed or are not suitable. These medicines could be protected and prioritized as key targets of national and international stewardship programs involving monitoring and utilization reporting, to preserve their effectiveness.

Antibiotic	Class	ATC	Category	Form	Unit price	Regimen
		code			(M)	_
Amoxicillin	Penicillins	J01CA04	Access	capsules	0.57	2 QID x 7/7
Amoxicillin/clavulanic-	Beta-lactam/beta-	J01CR02	Access	tablets	4.20	2 TDS x 7/7
acid	lactamase-inhibitor					
Ampicillin	Penicillins	J01CA01	Access	injection	15.93	1 BD x 3/7
Benzathine-	Penicillins	J01CE08	Access	injection	9.11	1 BD x 3/7
benzylpenicillin						
Benzylpenicillin	Penicillins	J01CE01	Access	injection	44.16	1 BD x 3/7
Chloramphenicol	Amphenicols	J01BA01	Access	capsules	0.93	1 TDS x 7/7
Cloxacillin	Penicillins	J01CF02	Access	capsules	0.63	2 TDS x 7/7
Doxycycline	Tetracyclines	J01AA02	Access	tablets	0.60	1 BD x 7/7
Metronidazole_oral	Imidazoles	P01AB01	Access	tablets	0.34	1 TDS x 7/7
Ceftriaxone	Third-generation-	J01DD04	Watch	injection	14.17	1 BD x 3/7
	cephalosporins					
Ciprofloxacin	Fluoroquinolones	J01MA02	Watch	tablets	0.17	1 BD x 3/7
Vancomycin_IV	Glycopeptides	J01XA01	Watch	injection	50.26	1 OD x 3/7
Colistin_IV	Polymyxins	J01XB01	Reserve	infusion	150.00	1 OD x 3/7
Polymyxin-B_IV	Polymyxins	J01XB02	Reserve	infusion	200.00	1 OD x 3/7
Linezolid	Oxazolidinones	J01XX08	Reserve	tablets	100.00	1 OD x 7/7