NATIONAL UNIVERSITY OF LESOTHO MSc EXAMINATIONS EC6507 – Advanced Econometrics Theory and Practice

January 2024	100 Marks	3 Hours

INSTRUCTIONS:

- 1) Answer Question one and any other three questions
- 2) Explain your answers and show workings (useful information is provided in the appendix).
- **3**) Students are allowed to use calculators and statistical tables. However, no additional material should be brought into and used in the examination.

Question 1

a. The Russian Ukraine war led to several external shocks in many economies across the globe. This is not unrelated to the fact that Russia and Ukraine export nearly a third of the world's wheat and barley and more than 70 percent of its sunflower oil. The war disrupted global supply chains across many countries in Africa that are largely self in-sufficient in food such as Lesotho. In relation to this,

i. State a valid research question and objective that applies to the Lesotho economy

ii.	Specify the economic or conceptual model	[2]
iii.	Specify the econometric model	[2]
iv.	Specify the null and alternative hypothesis	[2]
v.	Specify the nature and source of data required for such a study	[2]
vi.	Explain whether panel data and spatial data can be employed for this study	[2]
vii.	What kind of model will you be estimating?	[2]
viii.	How will you justify the variables that you will be selecting?	[2]
ix.	What are the dangers with omitting a variable on one hand and over-specify	ving a
	model on the other hand. In your view, which is worse?	[4]

- b. Likotsi, Libuseng and Hlalefang investigated the expenditure pattern for Lesotho consumers using a sample of 6334 households in the 2021 Lesotho Consumer Expenditure Survey. They performed the following three regressions. The first regression shows the result of regressing *LGFDHO*, the logarithm of annual household expenditure on food eaten at home, on LGEXP, the logarithm of total annual household expenditure, and *LGSIZE*, the logarithm of the number of persons in the household. The second regression shows results of regressing *LGFDHOPC*, the logarithm of food expenditure per capita (FDHO/SIZE) on LGEXPPC, the logarithm of total expenditure per capita (EXP/SIZE). The third regression shows results of *LGFDHOPC* regressed on *LGEXPPC* and *LGSIZE*. The STATA output results of the three regressions they performed are shown in Appendix I below.
 - Explain why the second model is a restricted version of the first, stating the i. restriction. [4]

[2]

- ii. Perform an *F* test of the restriction. Use 1 percent level of confidence. [5]
- iii. Perform a *t test* of the restriction. Use 1 percent level of confidence. [4]
- iv. Summarize your conclusions from the analysis of the regression results. [7]

Question 2

- a. Assume that you want to estimate the relationship between the age of the CEO and stock market return using the regression model based on a sample containing cross sectional data for 100 companies in 2023. In the sample you find that your data for age of the CEOs all happen to be in the range 45-47. Will this be a concern? Explain why or why not? [4]
- b. Increasing the sample size is said to alleviate multicollinearity problem by reducing the degree of micro-numerosity.
 - i. But what about increasing samples by identical observations? [3]
 - ii. What happens to the variance of the coefficients? [3]
 - iii. Comment on the claim that more data is no remedy for the multi-collinearity problem if the data are simply "more of the same". [3]
 - iv. What is the biggest danger with multicolinearity? [3]
- c. The variance of the estimator is derived as

$$Var[\hat{\beta}|X] = E\left[\left(\hat{\beta} - \beta\right)\left(\hat{\beta} - \beta\right)^{\mathrm{T}}\right] = \sigma^{2}(X^{T}X)^{-1}$$

Where, the assumptions of homoscedasticity and zero autocorrelation is used in the derivation. State and explain the assumptions for homoscedasticity and autocorrelation that validate this expression. [4]

Question 3

a. Mahapa, Matseliso and Mpho investigating whether government expenditure tends to crowd out investment fits the regression (standard errors in parentheses):

$$\hat{I} = \frac{18.10}{(7.79)} - \frac{1.97}{(0.14)}G + \frac{0.36}{(0.02)}Y \qquad \qquad R^2 = 0.99$$

where G is government recurrent expenditure, Y is gross domestic product and I is investment. Instead Nkobolo, Tlhalefo and Ntsoaki run the following regressions as alternative specifications of the model ran above (standard errors in parentheses):

$$\frac{\hat{I}}{P} = -\frac{0.03}{(0.28)} \frac{1}{P} - \frac{0.69}{(0.16)} \frac{G}{P} + \frac{0.34}{(0.03)} \frac{Y}{P} \qquad R^2 = 0.97$$

$$\frac{\hat{I}}{P} = \frac{0.39}{(0.04)} + \frac{0.03}{(0.42)} \frac{1}{Y} - \frac{0.93}{(0.22)} \frac{Y}{P} \qquad R^2 = 0.78$$

$$\widehat{log I} = -\frac{2.44}{(0.26)} - \frac{0.63}{(0.12)} \log G + \frac{1.60}{(0.12)} \log Y \qquad R^2 = 0.98$$

where G, Y, and I are as before and P is population.

In each case the regression is run again for the subsamples of observations with the 11 smallest and 11 greatest values of the sorting variable, after sorting by $G/_Y$, $Y/_P$ and $\log Y$, respectively. The residual sums of squares are as shown in table 1.

Ta	bl	e	1

	11 smallest	11 largest
(1)	1.43	12.63
(2)	0.0223	0.0155
(3)	0.573	0.155

Perform a Goldfeld–Quandt test at 1 percent level of confidence for each model specification and discuss the merits of each specification. [14] Is there evidence that investment is an inverse function of government expenditure? [1]

b. Rabeah, Mamanyena and Mamazondo save the residuals from the full-sample regression in (a) and regress their squares on G, Y, their squares, and their product. The STATA output results are shown in Appendix II below. Perform a White test for heteroskedasticity at 1 percent level of confidence. [5]

Question 4

a. Describe all the steps that are carried out when running a two stage least square (2SLS) regression with one endogenous variable, one exogenous variable and one instrument.

[5]

- b. What are the identification classifications of parameters in regression and briefly explain them?
 [6]
- c. What are the two conditions that a valid instrument must satisfy? [2]
- d. Mohapi, Mabela and Nthabeleng perform an OLS regression of the logarithm of hourly earnings on *S*, *EXP*, *ASVABC*, *MALE*, *ETHBLACKS* and *ETHHISP* using EAWE data set and an IV regression using *SM*, *SF*, and *SIBLINGS* as instruments for *ASVABC*. The STATA outputs of the two regressions (IV and OLS) are shown in Appendix III below. Perform a Durbin–Wu–Hausman test at 5 percent confidence to evaluate whether *ASVABC* appears to be subject to measurement error. [7]

Question 5

- a. What is autocorrelation and why is it a problem in time series data? [2]
- b. What is an autoregressive (AR) model, distributed lag (DL) model and autoregressive distributed lag (ADL) model. Give an example of each in terms of X and Y, where Y is the dependent variable and X is the independent variable.
- c. The tables in Appendix IV show the Eviews output results of a regression model explaining the relationship between food consumption and disposable income. Using the Eviews output results results in Appendix IV, perform the Breusch-Godfrey test for autocorrelation at 1 percent level of confidence. [7]
- d. Using the same results in Appendix IV, perform the Durbin-Watson test for autocorrelation at 1 percent level of confidence. [8]

APPENDICES

Appendix I

. reg LGFDHO LGEXP LGSIZE

Source	SS	df	М	S		Number of obs = 868
Model Residual	138.776549 130.219231	2 865	69.388 .15054	2747 2464		Prob > F = 0.0000 R-squared = 0.5159 Prob = 0.5159
Total	268.995781	867	.31026	0416		Root MSE = .388
LGFDHO	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
LGEXP LGSIZE _cons	.2866813 .4854698 4.720269	.0226 .0255 .2209	824 476 996 	12.639 19.003 21.359	0.000 0.000 0.000	.2421622 .3312003 .4353272 .5356124 4.286511 5.154027
. reg LGF	DHOPC LGEXPPC					
Source	ss +	df	1	MS		Number of obs = 868 F(1, 866) = 313.04
Model Residual	51.4364364 142.293973	1 866	51.43 .1643	64364 11747		Prob > F = 0.0000 R-squared = 0.2655 Prob > F = 0.0000
Total	193.73041	867	.2234	49146		Root MSE = .40535
LGFDHOPC	Coef.	Std.	Err.	t	₽> t	[95% Conf. Interval]
LGEXPPC _cons	.376283 3.700667	.021	2674 8925	17.693 18.700	0.000 0.000	.3345414 .4180246 3.312262 4.089072
. reg LGF	DHOPC LGEXPPC	LGSIZE	2			
Source	SS	df	M	IS		Number of obs = 868
Model Residual	63.5111811 130.219229	2 865	31.755 .15054	5905 2461		Prob > F = 0.0000 R-squared = 0.3278
Total	193.73041	867	.22344	9146		Root MSE = .388
LGFDHOPC	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
LGEXPPC LGSIZE _cons	.2866813 2278489 4.720269	.0226 .0254 .2209	5824 1412 9996	12.639 -8.956 21.359	0.000 0.000 0.000	.2421622 .3312004 27778261779152 4.286511 5.154027

Appendix II

Source	I	SS	df		MS		Number of obs	=	30
	+-						F(5, 24)	=	389.39
Model	L	229715064	5	459	43012.8		Prob > F	=	0.0000
Residual	L	2831715.29	24	117	988.137		R-squared	=	0.9878
	+-						Adj R-squared	=	0.9853
Total	I	232546779	29	801	8854.45		Root MSE	=	343.49
EI2		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
G	·	-36.11647	7.40	0742	-4.88	0.000	-51.39085	-2	0.84209
Y	i	5.522015	1.18	8795	4.65	0.000	3.068463	7	.975567
G2	i	.5463273	. 02'	7054	20.19	0.000	.4904907		.602164
¥2	i	.007948	.000	3913	20.31	0.000	.0071403		0087556
GYPROD	Ì	1350344	.006	0013	-22.50	0.000	1474204	:	1226485
_cons	İ	196.4158	92.9	7307	2.11	0.045	4.528833	3	88.3028

Appendix III

. ivreg LGEARN S EXP MALE ETHBLACK ETHHISP (ASVABC=SM SF SIBLINGS)

Instrumental variables (2SLS) regression

reg EI2 G Y G2 Y2 GYPROD

Source	SS	df	MS		Number of obs	= 500
Model Residual	27.631679 121.501359	6 4.6 493 .24	0527983 6453061		F(6, 493) Prob > F R-squared	= 22.29 = 0.0000 = 0.1853 = 0.1754
Total	149.133038	499 .29	8863804		Root MSE	= .49644
LGEARN	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ASVABC S EXP MALE ETHBLACK ETHHISP CONS	0938253 .1203265 .0444094 .1909863 1678914 .075698 .6503199	.1319694 .0251596 .0092246 .0456252 .1355897 .0828383 .3570741	-0.71 4.78 4.81 4.19 -1.24 0.91 1.82	0.477 0.000 0.000 0.216 0.361 0.069	3531172 .0708931 .026285 .1013424 4342963 0870617 0512548	.1654666 .1697599 .0625338 .2806302 .0985136 .2384576 1.351895

Instrumented: ASVABC

Instruments: S EXP MALE ETHBLACK ETHHISP SM SF SIBLINGS

. estimates store IV1

reg LGEARN S EXP ASVABC MALE ETHBLACK ETHHISP

Source	 	SS	df		MS		Number of obs	=	500
Model Residual		33.5095496 115.623489	6 493	5. .2	58492493 34530403		Prob > F R-squared	=	0.0000
Total		149.133038	499	. 2	98863804		Root MSE	=	.48428
LGEARN	 	Coef.	Std.	Err	:. t	P> t	[95% Conf.	In	terval]
S EXP ASVABC MALE ETHBLACK ETHHISP _cons		.0953713 .043139 .0477892 .1954406 0448382 .1226463 .9766376	.010 .008 .028 .044 .07 .069 .193	6101 9279 2877 3323 4738 2577 8648	8.99 4.83 1.69 4.41 8 -0.60 1.77 8 5.04	0.000 0.000 0.092 0.000 0.549 0.077 0.000	.0745246 .0255976 00779 .1083371 1916824 0134303 .5957345		1162179 0606805 1033685 2825441 .102006 .258723 .357541

. estimates store OLS1

hausman IV1 OLS1, constant

		Coeffi	cients		
		(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
		IV1	OLS1	Difference	S.E
ASVABC	Ì	0938253	.0477892	1416145	.1289021
S	1	.1203265	.0953713	.0249552	.022813
EXP	1	.0444094	.043139	.0012704	.0023208
MALE	1	.1909863	.1954406	0044543	.0107847
ETHBLACK	T	1678914	0448382	1230532	.1131318
ETHHISP	1	.075698	.1226463	0469484	.0454484
_cons	1	.6503199	.9766376	3263177	.2998639

b = consistent under Ho and Ha; obtained from ivreg

B = inconsistent under Ha, efficient under Ho; obtained from regress Test: Ho: difference in coefficients not systematic

```
chi2(7) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)
= 1.21
```

```
Prob>chi2 = 0.9908
```

Dependent Variable	: RLGFOOD	
Method: Least Squar	res	
Sample(adjusted):	1961 2003	
Included observation	ons: 43 after	adjusting endpoints
Variable	Coefficient	Std. Error t-Statistic Prob.
C	0.071220	0.277253 0.256879 0.798
LGDP1	0.000251	0.006491 0.038704 0.9693
LGPRFOOD	-0.015572	0.051617 -0.301695 0.7643
RLGFOOD (-1)	1.009693	0.171060 1.681548 0.0000
RLGF00D(-2)	-0.289159	0.171960 -1.681548 0.100
R-squared	0.602010	Mean dependent var 0.000149
Adjusted R-squared	0.560117	S.D. dependent var 0.020368
S.E. of regression	0.013509	Akaike info criter-5.661981
Sum squared resid	0.006935	Schwarz criterion -5.457191
Log likelihood	126.7326	F-statistic 14.36996
Durbin-Watson stat	1.892212	Prob(F-statistic) 0.00000
Dependent Variable:	LGFOOD	
Method: Least Squar	res	
Sample: 1959 2003		
Included observatio	ons: 45	
Variable	Coefficient	Std. Error t-Statistic Prob
C	2 236159	0 388103 5 760428 0 000
LCDPT	0 500184	0.008793 56 88557 0.000
ICPREOOD	-0.07/681	0.072864 -1.024941 0.311
	-0.074081	0.072804 -1.024941 0.31
R-squared	0.992009	Mean dependent var 6.02133
Adjusted R-squared	0.991628	S.D. dependent var 0.22278
S.E. of regression	0.020384	Akaike info criter-4.88374
Sum squared resid	0.017452	Schwarz criterion -4.76330
Log likelihood	112.8843	Hannan-Quinn crite-4.83884
F-statistic	2606.860	Durbin-Watson stat 0.47854
Prob(F-statistic)	0.000000	

Appendix IV